Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import numpy as np
|
|
3 |
import random
|
4 |
|
5 |
import spaces #[uncomment to use ZeroGPU]
|
6 |
-
from diffusers import StableDiffusionXLPipeline, AutoencoderKL
|
7 |
import torch
|
8 |
from typing import Tuple
|
9 |
|
@@ -27,6 +27,17 @@ pipe = StableDiffusionXLPipeline.from_pretrained(
|
|
27 |
)
|
28 |
pipe.to(device)
|
29 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
MAX_SEED = np.iinfo(np.int32).max
|
31 |
MAX_IMAGE_SIZE = 4096
|
32 |
|
@@ -104,6 +115,8 @@ def infer(
|
|
104 |
height,
|
105 |
guidance_scale,
|
106 |
num_inference_steps,
|
|
|
|
|
107 |
progress=gr.Progress(track_tqdm=True),
|
108 |
):
|
109 |
if randomize_seed:
|
@@ -111,15 +124,28 @@ def infer(
|
|
111 |
prompt, negative_prompt = apply_style(style, prompt, negative_prompt)
|
112 |
generator = torch.Generator().manual_seed(seed)
|
113 |
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
return image, seed
|
125 |
|
@@ -140,7 +166,6 @@ css = """
|
|
140 |
with gr.Blocks(css=css) as demo:
|
141 |
with gr.Column(elem_id="col-container"):
|
142 |
gr.Markdown(" # ImageGen, the fastest and most precise image generator")
|
143 |
-
|
144 |
with gr.Row():
|
145 |
prompt = gr.Text(
|
146 |
label="Prompt",
|
@@ -149,11 +174,22 @@ with gr.Blocks(css=css) as demo:
|
|
149 |
placeholder="Enter your prompt",
|
150 |
container=False,
|
151 |
)
|
152 |
-
|
153 |
run_button = gr.Button("Run", scale=0, variant="primary")
|
154 |
-
|
155 |
result = gr.Image(label="Result", show_label=False)
|
156 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
157 |
with gr.Row(visible=True):
|
158 |
style_selection = gr.Radio(
|
159 |
show_label=True,
|
@@ -230,6 +266,8 @@ with gr.Blocks(css=css) as demo:
|
|
230 |
height,
|
231 |
guidance_scale,
|
232 |
num_inference_steps,
|
|
|
|
|
233 |
],
|
234 |
outputs=[result, seed],
|
235 |
)
|
|
|
3 |
import random
|
4 |
|
5 |
import spaces #[uncomment to use ZeroGPU]
|
6 |
+
from diffusers import StableDiffusionXLPipeline, AutoencoderKL, StableDiffusionXLImg2ImgPipeline
|
7 |
import torch
|
8 |
from typing import Tuple
|
9 |
|
|
|
27 |
)
|
28 |
pipe.to(device)
|
29 |
|
30 |
+
pipe_img2img = StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
31 |
+
"RunDiffusion/Juggernaut-XL-v9",
|
32 |
+
vae=vae,
|
33 |
+
torch_dtype=torch.float16,
|
34 |
+
custom_pipeline="lpw_stable_diffusion_xl",
|
35 |
+
use_safetensors=True,
|
36 |
+
add_watermarker=False,
|
37 |
+
variant="fp16",
|
38 |
+
)
|
39 |
+
pipe_img2img.to(device)
|
40 |
+
|
41 |
MAX_SEED = np.iinfo(np.int32).max
|
42 |
MAX_IMAGE_SIZE = 4096
|
43 |
|
|
|
115 |
height,
|
116 |
guidance_scale,
|
117 |
num_inference_steps,
|
118 |
+
input_image=None, # New parameter for input image
|
119 |
+
strength=0.8, # New parameter for img2img strength
|
120 |
progress=gr.Progress(track_tqdm=True),
|
121 |
):
|
122 |
if randomize_seed:
|
|
|
124 |
prompt, negative_prompt = apply_style(style, prompt, negative_prompt)
|
125 |
generator = torch.Generator().manual_seed(seed)
|
126 |
|
127 |
+
if input_image is not None:
|
128 |
+
# Use img2img pipeline if an image is provided
|
129 |
+
image = pipe_img2img(
|
130 |
+
prompt=prompt,
|
131 |
+
image=input_image, # Pass the input image
|
132 |
+
strength=strength, # Control how much the image is changed
|
133 |
+
negative_prompt=negative_prompt,
|
134 |
+
guidance_scale=guidance_scale,
|
135 |
+
num_inference_steps=num_inference_steps,
|
136 |
+
generator=generator,
|
137 |
+
).images[0]
|
138 |
+
else:
|
139 |
+
# Use text2img pipeline otherwise
|
140 |
+
image = pipe(
|
141 |
+
prompt=prompt,
|
142 |
+
negative_prompt=negative_prompt,
|
143 |
+
guidance_scale=guidance_scale,
|
144 |
+
num_inference_steps=num_inference_steps,
|
145 |
+
width=width,
|
146 |
+
height=height,
|
147 |
+
generator=generator,
|
148 |
+
).images[0]
|
149 |
|
150 |
return image, seed
|
151 |
|
|
|
166 |
with gr.Blocks(css=css) as demo:
|
167 |
with gr.Column(elem_id="col-container"):
|
168 |
gr.Markdown(" # ImageGen, the fastest and most precise image generator")
|
|
|
169 |
with gr.Row():
|
170 |
prompt = gr.Text(
|
171 |
label="Prompt",
|
|
|
174 |
placeholder="Enter your prompt",
|
175 |
container=False,
|
176 |
)
|
|
|
177 |
run_button = gr.Button("Run", scale=0, variant="primary")
|
|
|
178 |
result = gr.Image(label="Result", show_label=False)
|
179 |
|
180 |
+
# Add image input and strength slider
|
181 |
+
with gr.Row():
|
182 |
+
input_image = gr.Image(type="pil", label="Input Image (Optional)", show_label=True, height=200)
|
183 |
+
with gr.Column():
|
184 |
+
strength = gr.Slider(
|
185 |
+
label="Image Strength",
|
186 |
+
minimum=0.0,
|
187 |
+
maximum=1.0,
|
188 |
+
step=0.01,
|
189 |
+
value=0.8, # Default strength for img2img
|
190 |
+
visible=True, # Make it visible if you want it always there, or toggle visibility with JS
|
191 |
+
)
|
192 |
+
|
193 |
with gr.Row(visible=True):
|
194 |
style_selection = gr.Radio(
|
195 |
show_label=True,
|
|
|
266 |
height,
|
267 |
guidance_scale,
|
268 |
num_inference_steps,
|
269 |
+
input_image, # Add input_image to inputs
|
270 |
+
strength, # Add strength to inputs
|
271 |
],
|
272 |
outputs=[result, seed],
|
273 |
)
|