File size: 9,863 Bytes
3ebabb5
 
 
 
adb2397
eb46155
3ebabb5
edff4a8
3ebabb5
 
ab1e732
902b92c
3ebabb5
 
 
 
d9ef2cf
3ebabb5
e90137c
 
 
 
 
 
 
 
 
 
3ebabb5
eb46155
 
 
 
 
 
 
 
 
 
 
3ebabb5
7b743a3
3ebabb5
1a90943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ebabb5
062bc96
 
 
 
 
 
adb2397
3ebabb5
 
 
062bc96
3ebabb5
 
 
 
 
 
eb46155
 
3ebabb5
 
 
 
062bc96
3ebabb5
 
eb46155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3ebabb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a90943
3ebabb5
 
 
 
 
 
 
 
 
 
 
eb46155
 
 
 
 
 
 
 
 
 
 
 
 
1a90943
 
 
 
 
 
 
 
 
 
3ebabb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9ef2cf
3ebabb5
 
 
 
 
 
 
d9ef2cf
3ebabb5
 
 
 
 
 
 
 
 
 
 
 
 
 
a5caa36
3ebabb5
a5caa36
3ebabb5
 
 
 
 
 
 
 
 
062bc96
3ebabb5
 
 
 
 
 
eb46155
 
3ebabb5
 
 
 
 
d9ef2cf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import gradio as gr
import numpy as np
import random

import spaces #[uncomment to use ZeroGPU]
from diffusers import StableDiffusionXLPipeline, AutoencoderKL, StableDiffusionXLImg2ImgPipeline
import torch
from typing import Tuple

device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "RunDiffusion/Juggernaut-XL-v9"  # Replace to the model you would like to use
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

pipe = StableDiffusionXLPipeline.from_pretrained(
        "RunDiffusion/Juggernaut-XL-v9",
        vae=vae,
        torch_dtype=torch.float16,
        custom_pipeline="lpw_stable_diffusion_xl",
        use_safetensors=True,
        add_watermarker=False,
        variant="fp16",
    )
pipe.to(device)

pipe_img2img = StableDiffusionXLImg2ImgPipeline.from_pretrained(
    "RunDiffusion/Juggernaut-XL-v9",
    vae=vae,
    torch_dtype=torch.float16,
    custom_pipeline="lpw_stable_diffusion_xl",
    use_safetensors=True,
    add_watermarker=False,
    variant="fp16",
)
pipe_img2img.to(device)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 4096

style_list = [
    {
        "name": "(No style)",
        "prompt": "{prompt}",
        "negative_prompt": "",
    },
    {
        "name": "Cinematic",
        "prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
        "negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
    },
    {
        "name": "Photographic",
        "prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
        "negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
    },
    {
        "name": "Anime",
        "prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime,  highly detailed",
        "negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
    },
    {
        "name": "Manga",
        "prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style",
        "negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style",
    },
    {
        "name": "Digital Art",
        "prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
        "negative_prompt": "photo, photorealistic, realism, ugly",
    },
    {
        "name": "Pixel art",
        "prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
        "negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
    },
    {
        "name": "Fantasy art",
        "prompt": "ethereal fantasy concept art of  {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
        "negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
    },
    {
        "name": "Neonpunk",
        "prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
        "negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
    },
    {
        "name": "3D Model",
        "prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
        "negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
    },
]   

styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "(No style)"

def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
    p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
    if not negative:
        negative = ""
    return p.replace("{prompt}", positive), n + negative

@spaces.GPU #[uncomment to use ZeroGPU]
def infer(
    prompt,
    negative_prompt,
    style,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    input_image=None,  # New parameter for input image
    strength=0.8,  # New parameter for img2img strength
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    prompt, negative_prompt = apply_style(style, prompt, negative_prompt)
    generator = torch.Generator().manual_seed(seed)

    if input_image is not None:
        # Use img2img pipeline if an image is provided
        image = pipe_img2img(
            prompt=prompt,
            image=input_image,  # Pass the input image
            strength=strength,   # Control how much the image is changed
            negative_prompt=negative_prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            generator=generator,
        ).images[0]
    else:
        # Use text2img pipeline otherwise
        image = pipe(
            prompt=prompt,
            negative_prompt=negative_prompt,
            guidance_scale=guidance_scale,
            num_inference_steps=num_inference_steps,
            width=width,
            height=height,
            generator=generator,
        ).images[0]

    return image, seed


examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # ImageGen, the fastest and most precise image generator")
        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0, variant="primary")
        result = gr.Image(label="Result", show_label=False)

        # Add image input and strength slider
        with gr.Row():
            input_image = gr.Image(type="pil", label="Input Image (Optional)", show_label=True, height=200)
            with gr.Column():
                strength = gr.Slider(
                    label="Image Strength",
                    minimum=0.0,
                    maximum=1.0,
                    step=0.01,
                    value=0.8, # Default strength for img2img
                    visible=True, # Make it visible if you want it always there, or toggle visibility with JS
                )

        with gr.Row(visible=True):
            style_selection = gr.Radio(
                show_label=True,
                container=True,
                interactive=True,
                choices=STYLE_NAMES,
                value=DEFAULT_STYLE_NAME,
                label="Image Style",
            )

        with gr.Accordion("Advanced Settings", open=False):
            negative_prompt = gr.Text(
                label="Negative prompt",
                max_lines=1,
                placeholder="Enter a negative prompt",
                visible=False,
            )

            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )

            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=4096,  # Replace with defaults that work for your model
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=4096,  # Replace with defaults that work for your model
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=0.0,  # Replace with defaults that work for your model
                )

                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=500,
                    step=1,
                    value=500,  # Replace with defaults that work for your model
                )

        gr.Examples(examples=examples, inputs=[prompt])
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            style_selection,
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
            input_image,  # Add input_image to inputs
            strength,     # Add strength to inputs
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch(share=True)