File size: 12,553 Bytes
3ebabb5 8af5338 3ebabb5 edff4a8 8af5338 3ebabb5 ab1e732 902b92c 3ebabb5 d9ef2cf 3ebabb5 e90137c 3ebabb5 8af5338 eb46155 3ebabb5 7b743a3 3ebabb5 1a90943 3ebabb5 062bc96 8af5338 3ebabb5 062bc96 8af5338 3ebabb5 062bc96 3ebabb5 8af5338 3ebabb5 8af5338 3ebabb5 8af5338 3ebabb5 8af5338 3ebabb5 8af5338 3ebabb5 8af5338 3ebabb5 8af5338 3ebabb5 8af5338 3ebabb5 8af5338 3ebabb5 8af5338 eb46155 1a90943 3ebabb5 8af5338 3ebabb5 8af5338 3ebabb5 8af5338 3ebabb5 8af5338 3ebabb5 8af5338 3ebabb5 8af5338 3ebabb5 8af5338 3ebabb5 8af5338 3ebabb5 062bc96 8af5338 3ebabb5 d9ef2cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
import gradio as gr
import numpy as np
import random
import spaces
from diffusers import StableDiffusionXLPipeline, AutoencoderKL, ControlNetModel
from diffusers.utils import load_image
import torch
from typing import Tuple
from PIL import Image
from controlnet_aux import OpenposeDetector
import insightface
import onnxruntime
device = "cuda" if torch.cuda.is_available() else "cpu"
model_repo_id = "RunDiffusion/Juggernaut-XL-v9" # Replace to the model you would like to use
vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
pipe = StableDiffusionXLPipeline.from_pretrained(
"RunDiffusion/Juggernaut-XL-v9",
vae=vae,
torch_dtype=torch.float16,
custom_pipeline="lpw_stable_diffusion_xl",
use_safetensors=True,
add_watermarker=False,
variant="fp16",
)
pipe.to(device)
controlnet_openpose = ControlNetModel.from_pretrained(
"lllyasviel/control_v11p_sdxl_openpose", torch_dtype=torch.float16
).to(device)
openpose_detector = OpenposeDetector.from_pretrained("lllyasviel/ControlNet/annotator/ckpts/body_pose_model.pth").to(device)
try:
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-faceid_sdxl.bin")
except Exception as e:
print(f"Could not load IP-Adapter FaceID. Make sure the model exists and paths are correct: {e}")
print("Trying a common alternative: ip-adapter-plus-face_sdxl_vit-h.safetensors")
try:
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-plus-face_sdxl_vit-h.safetensors")
except Exception as e2:
print(f"Could not load second IP-Adapter variant: {e2}")
print("IP-Adapter will not be available. Please check your IP-Adapter setup.")
pipe.unload_ip_adapter()
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 4096
style_list = [
{
"name": "(No style)",
"prompt": "{prompt}",
"negative_prompt": "",
},
{
"name": "Cinematic",
"prompt": "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy",
"negative_prompt": "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured",
},
{
"name": "Photographic",
"prompt": "cinematic photo {prompt} . 35mm photograph, film, bokeh, professional, 4k, highly detailed",
"negative_prompt": "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly",
},
{
"name": "Anime",
"prompt": "anime artwork {prompt} . anime style, key visual, vibrant, studio anime, highly detailed",
"negative_prompt": "photo, deformed, black and white, realism, disfigured, low contrast",
},
{
"name": "Manga",
"prompt": "manga style {prompt} . vibrant, high-energy, detailed, iconic, Japanese comic style",
"negative_prompt": "ugly, deformed, noisy, blurry, low contrast, realism, photorealistic, Western comic style",
},
{
"name": "Digital Art",
"prompt": "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed",
"negative_prompt": "photo, photorealistic, realism, ugly",
},
{
"name": "Pixel art",
"prompt": "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics",
"negative_prompt": "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic",
},
{
"name": "Fantasy art",
"prompt": "ethereal fantasy concept art of {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy",
"negative_prompt": "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white",
},
{
"name": "Neonpunk",
"prompt": "neonpunk style {prompt} . cyberpunk, vaporwave, neon, vibes, vibrant, stunningly beautiful, crisp, detailed, sleek, ultramodern, magenta highlights, dark purple shadows, high contrast, cinematic, ultra detailed, intricate, professional",
"negative_prompt": "painting, drawing, illustration, glitch, deformed, mutated, cross-eyed, ugly, disfigured",
},
{
"name": "3D Model",
"prompt": "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting",
"negative_prompt": "ugly, deformed, noisy, low poly, blurry, painting",
},
]
styles = {k["name"]: (k["prompt"], k["negative_prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "(No style)"
def apply_style(style_name: str, positive: str, negative: str = "") -> Tuple[str, str]:
p, n = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
if not negative:
negative = ""
return p.replace("{prompt}", positive), n + negative
@spaces.GPU
def infer(
prompt,
negative_prompt,
style,
# Removed general img2img reference as we are specializing
input_image_pose, # New: for ControlNet OpenPose
pose_strength, # New: strength for ControlNet
input_image_face, # New: for IP-Adapter Face
face_fidelity, # New: fidelity/strength for IP-Adapter
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
prompt, negative_prompt = apply_style(style, prompt, negative_prompt)
generator = torch.Generator().manual_seed(seed)
# --- NEW: Prepare ControlNet and IP-Adapter inputs ---
controlnet_images = []
controlnet_conditioning_scales = []
controlnet_models_to_use = []
ip_adapter_image_embeddings = None # Will store the face embeddings
# Process Pose Reference
if input_image_pose:
# Preprocess the image to get the OpenPose skeleton
processed_pose_image = openpose_detector(input_image_pose)
controlnet_images.append(processed_pose_image)
controlnet_conditioning_scales.append(pose_strength)
controlnet_models_to_use.append(controlnet_openpose)
# Process Face Reference (IP-Adapter)
if input_image_face and pipe.has_lora_weights("ip_adapter"): # Check if IP-Adapter was loaded successfully
# For IP-Adapter FaceID, the pipeline itself usually handles embedding extraction
# You just pass the image directly.
# The scale is set before the call.
pipe.set_ip_adapter_scale(face_fidelity)
# ip_adapter_image_embeddings = pipe.encode_ip_adapter_image(input_image_face) # If you need to manually encode
# Often, you just pass the image to the main call directly if IP-Adapter is loaded.
# --- END NEW INPUT PREPARATION ---
# Adjusting the pipe call to use ControlNet and IP-Adapter
# Note: If no reference images are provided, it will fall back to text-to-image.
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=controlnet_images if controlnet_images else None, # Pass processed pose image(s) if available
controlnet_conditioning_scale=controlnet_conditioning_scales if controlnet_conditioning_scales else None,
controlnet=controlnet_models_to_use if controlnet_models_to_use else None,
ip_adapter_image=input_image_face if input_image_face else None, # Pass the raw face image for IP-Adapter
# ip_adapter_image_embeds=ip_adapter_image_embeddings, # Use this if you pre-encode
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
).images[0]
return image, seed
examples = [
"A stunning woman standing on a beach at sunset, dramatic lighting, highly detailed",
"A man in a futuristic city, cyberpunk style, neon lights",
"An AI model posing with a friendly robot in a studio, professional photoshoot",
]
css = """#col-container {
margin: 0 auto;
max-width: 640px;
}"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # AI Instagram Model Creator")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Describe your AI model and scene (e.g., 'A confident woman in a red dress, city background')",
container=False,
)
run_button = gr.Button("Generate", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Reference Images", open=True):
gr.Markdown("Upload images to control pose and face consistency.")
input_image_pose = gr.Image(label="Human Pose Reference (for body posture)", type="pil", show_label=True)
pose_strength = gr.Slider(
label="Pose Control Strength (0.0 = ignore, 1.0 = strict adherence)",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.8, # Good starting point for strong pose control
)
gr.Markdown("---") # Separator
input_image_face = gr.Image(label="Face Reference (for facial consistency)", type="pil", show_label=True)
face_fidelity = gr.Slider(
label="Face Fidelity (0.0 = ignore, 1.0 = highly similar)",
minimum=0.0,
maximum=1.0,
step=0.01,
value=0.7, # Good starting point for face transfer
)
with gr.Row(visible=True):
style_selection = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
label="Image Style",
)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="What you DON'T want in the image (e.g., 'deformed, blurry, text')",
visible=False,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=20.0, # Increased max for more control
step=0.1,
value=7.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=100, # More typical steps for SDXL (20-50 usually sufficient)
step=1,
value=30,
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
negative_prompt,
style_selection,
input_image_pose,
pose_strength,
input_image_face,
face_fidelity,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch(share=True)
|