|
import os |
|
import streamlit as st |
|
from speechbrain.pretrained.interfaces import foreign_class |
|
from faster_whisper import WhisperModel |
|
|
|
|
|
|
|
|
|
|
|
@st.cache_resource(show_spinner="Loading model...") |
|
def load_accent_model(): |
|
"""Loads custom accent classification model.""" |
|
if not os.getenv("HF_TOKEN"): |
|
st.error("Hugging Face token not found.") |
|
st.stop() |
|
try: |
|
return foreign_class( |
|
source="Jzuluaga/accent-id-commonaccent_xlsr-en-english", |
|
pymodule_file="custom_interface.py", |
|
classname="CustomEncoderWav2vec2Classifier" |
|
) |
|
except Exception as e: |
|
st.error(f"β Error loading model: {e}") |
|
st.stop() |
|
|
|
@st.cache_resource(show_spinner="Loading Whisper...") |
|
def load_whisper(): |
|
return WhisperModel("tiny", device="cpu", compute_type="int8_float32") |
|
|