Upload 13 files
Browse files- .streamlit/config.toml +3 -0
- LICENSE +21 -0
- app.py +109 -0
- models/__init__.py +1 -0
- models/custom_interface.py +146 -0
- models/model_loader.py +28 -0
- packages.txt +1 -0
- requirements.txt +29 -3
- utils/__init__.py +1 -0
- utils/accent_analysis.py +51 -0
- utils/audio_processing.py +109 -0
- utils/session_utils.py +30 -0
- utils/video_processing.py +47 -0
.streamlit/config.toml
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
[server]
|
2 |
+
fileWatcherType = "none"
|
3 |
+
maxUploadSize = 70
|
LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2025 Ryan Kembo
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
app.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import tempfile
|
3 |
+
import shutil
|
4 |
+
import psutil
|
5 |
+
import torch
|
6 |
+
import torchaudio
|
7 |
+
|
8 |
+
from utils.audio_processing import trim_audio, download_audio_as_wav
|
9 |
+
from utils.video_processing import trim_video
|
10 |
+
from models.model_loader import load_accent_model, load_whisper
|
11 |
+
from utils.accent_analysis import analyze_accent
|
12 |
+
from utils.session_utils import initialize_session_state, display_memory_once, reset_session_state_except_model
|
13 |
+
from models.custom_interface import CustomEncoderWav2vec2Classifier
|
14 |
+
|
15 |
+
st.title("ποΈ English Accent Audio Detector")
|
16 |
+
|
17 |
+
# Initialize session state
|
18 |
+
initialize_session_state()
|
19 |
+
|
20 |
+
# Load models once
|
21 |
+
if 'classifier' not in st.session_state:
|
22 |
+
st.session_state.classifier = load_accent_model()
|
23 |
+
if 'whisper' not in st.session_state:
|
24 |
+
st.session_state.whisper = load_whisper()
|
25 |
+
|
26 |
+
# Memory info
|
27 |
+
display_memory_once()
|
28 |
+
|
29 |
+
# Reset state for a new analysis
|
30 |
+
if st.button("π Analyze new video"):
|
31 |
+
reset_session_state_except_model()
|
32 |
+
st.rerun()
|
33 |
+
|
34 |
+
# Check for ffmpeg
|
35 |
+
if not shutil.which("ffmpeg"):
|
36 |
+
raise EnvironmentError("FFmpeg not found. Please install or add it to PATH.")
|
37 |
+
|
38 |
+
# Input options
|
39 |
+
option = st.radio("Choose input method:", ["Upload video file", "Enter Video Url"])
|
40 |
+
|
41 |
+
if option == "Upload video file":
|
42 |
+
uploaded_video = st.file_uploader("Upload your video", type=["mp4", "mov", "avi", "mkv"])
|
43 |
+
if uploaded_video is not None:
|
44 |
+
temp_video_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4")
|
45 |
+
with open(temp_video_path.name, "wb") as f:
|
46 |
+
f.write(uploaded_video.read())
|
47 |
+
audio_path = trim_video(temp_video_path.name)
|
48 |
+
st.success("β
Video uploaded successfully.")
|
49 |
+
st.session_state.audio_path = audio_path
|
50 |
+
|
51 |
+
|
52 |
+
elif option == "Enter Video Url":
|
53 |
+
yt_url = st.text_input("Paste YouTube URL")
|
54 |
+
if st.button("Download Video"):
|
55 |
+
with st.spinner("Downloading video..."):
|
56 |
+
audio_path = download_audio_as_wav(yt_url)
|
57 |
+
audio_path = trim_audio(audio_path)
|
58 |
+
if audio_path:
|
59 |
+
st.success("β
Video downloaded successfully.")
|
60 |
+
st.session_state.audio_path = audio_path
|
61 |
+
|
62 |
+
|
63 |
+
# Transcription and Accent Analysis
|
64 |
+
if st.session_state.audio_path and not st.session_state.transcription:
|
65 |
+
if st.button("π§ Extract Audio"):
|
66 |
+
st.session_state.audio_ready = True
|
67 |
+
st.audio(st.session_state.audio_path, format='audio/wav')
|
68 |
+
|
69 |
+
mem = psutil.virtual_memory()
|
70 |
+
st.write(f"π Memory used: {mem.percent}%")
|
71 |
+
#Detect Language AND FILTER OUT NON-ENGLISH AUDIOS FOR ANALYSIS
|
72 |
+
segments, info = st.session_state.whisper.transcribe(st.session_state.audio_path, beam_size=1)
|
73 |
+
|
74 |
+
# Convert segments (generator) to full transcription string
|
75 |
+
st.session_state.transcription = " ".join([segment.text for segment in segments])
|
76 |
+
|
77 |
+
if info.language != "en":
|
78 |
+
|
79 |
+
st.error("β This video does not appear to be in English. Please provide a clear English video.")
|
80 |
+
else:
|
81 |
+
# Show transcription for audio
|
82 |
+
with st.spinner("Transcribing audio..."):
|
83 |
+
st.markdown(" Transcript Preview")
|
84 |
+
st.markdown(st.session_state.transcription)
|
85 |
+
st.success("π΅ Audio extracted and ready for analysis!")
|
86 |
+
mem = psutil.virtual_memory()
|
87 |
+
st.write(f"π Memory used: {mem.percent}%")
|
88 |
+
|
89 |
+
|
90 |
+
|
91 |
+
if st.session_state.transcription:
|
92 |
+
if st.button("π£οΈ Analyze Accent"):
|
93 |
+
with st.spinner("π Analyzing accent..."):
|
94 |
+
try:
|
95 |
+
mem = psutil.virtual_memory()
|
96 |
+
st.write(f"π Memory used: {mem.percent}%")
|
97 |
+
waveform, sample_rate = torchaudio.load(st.session_state.audio_path)
|
98 |
+
readable_accent, confidence = analyze_accent(waveform, sample_rate, st.session_state.classifier)
|
99 |
+
|
100 |
+
if readable_accent:
|
101 |
+
st.success(f"β
Accent Detected: **{readable_accent}**")
|
102 |
+
st.info(f"π Confidence: {confidence}%")
|
103 |
+
|
104 |
+
else:
|
105 |
+
st.warning("Could not determine accent.")
|
106 |
+
|
107 |
+
except Exception as e:
|
108 |
+
st.error("β Failed to analyze accent.")
|
109 |
+
st.code(str(e))
|
models/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
models/custom_interface.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import torch
|
3 |
+
from speechbrain.pretrained import Pretrained
|
4 |
+
|
5 |
+
|
6 |
+
class CustomEncoderWav2vec2Classifier(Pretrained):
|
7 |
+
"""A ready-to-use class for utterance-level classification (e.g, speaker-id,
|
8 |
+
language-id, emotion recognition, keyword spotting, etc).
|
9 |
+
The class assumes that an self-supervised encoder like wav2vec2/hubert and a classifier model
|
10 |
+
are defined in the yaml file. If you want to
|
11 |
+
convert the predicted index into a corresponding text label, please
|
12 |
+
provide the path of the label_encoder in a variable called 'lab_encoder_file'
|
13 |
+
within the yaml.
|
14 |
+
The class can be used either to run only the encoder (encode_batch()) to
|
15 |
+
extract embeddings or to run a classification step (classify_batch()).
|
16 |
+
```
|
17 |
+
Example
|
18 |
+
-------
|
19 |
+
>>> import torchaudio
|
20 |
+
>>> from speechbrain.pretrained import EncoderClassifier
|
21 |
+
>>> # Model is downloaded from the speechbrain HuggingFace repo
|
22 |
+
>>> tmpdir = getfixture("tmpdir")
|
23 |
+
>>> classifier = EncoderClassifier.from_hparams(
|
24 |
+
... source="speechbrain/spkrec-ecapa-voxceleb",
|
25 |
+
... savedir=tmpdir,
|
26 |
+
... )
|
27 |
+
>>> # Compute embeddings
|
28 |
+
>>> signal, fs = torchaudio.load("samples/audio_samples/example1.wav")
|
29 |
+
>>> embeddings = classifier.encode_batch(signal)
|
30 |
+
>>> # Classification
|
31 |
+
>>> prediction = classifier .classify_batch(signal)
|
32 |
+
"""
|
33 |
+
|
34 |
+
def __init__(self, *args, **kwargs):
|
35 |
+
super().__init__(*args, **kwargs)
|
36 |
+
|
37 |
+
def encode_batch(self, wavs, wav_lens=None, normalize=False):
|
38 |
+
"""Encodes the input audio into a single vector embedding.
|
39 |
+
The waveforms should already be in the model's desired format.
|
40 |
+
You can call:
|
41 |
+
``normalized = <this>.normalizer(signal, sample_rate)``
|
42 |
+
to get a correctly converted signal in most cases.
|
43 |
+
Arguments
|
44 |
+
---------
|
45 |
+
wavs : torch.tensor
|
46 |
+
Batch of waveforms [batch, time, channels] or [batch, time]
|
47 |
+
depending on the model. Make sure the sample rate is fs=16000 Hz.
|
48 |
+
wav_lens : torch.tensor
|
49 |
+
Lengths of the waveforms relative to the longest one in the
|
50 |
+
batch, tensor of shape [batch]. The longest one should have
|
51 |
+
relative length 1.0 and others len(waveform) / max_length.
|
52 |
+
Used for ignoring padding.
|
53 |
+
normalize : bool
|
54 |
+
If True, it normalizes the embeddings with the statistics
|
55 |
+
contained in mean_var_norm_emb.
|
56 |
+
Returns
|
57 |
+
-------
|
58 |
+
torch.tensor
|
59 |
+
The encoded batch
|
60 |
+
"""
|
61 |
+
# Manage single waveforms in input
|
62 |
+
if len(wavs.shape) == 1:
|
63 |
+
wavs = wavs.unsqueeze(0)
|
64 |
+
|
65 |
+
# Assign full length if wav_lens is not assigned
|
66 |
+
if wav_lens is None:
|
67 |
+
wav_lens = torch.ones(wavs.shape[0], device=self.device)
|
68 |
+
|
69 |
+
# Storing waveform in the specified device
|
70 |
+
wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device)
|
71 |
+
wavs = wavs.float()
|
72 |
+
|
73 |
+
# Computing features and embeddings
|
74 |
+
outputs = self.mods.wav2vec2(wavs)
|
75 |
+
|
76 |
+
# last dim will be used for AdaptativeAVG pool
|
77 |
+
outputs = self.mods.avg_pool(outputs, wav_lens)
|
78 |
+
outputs = outputs.view(outputs.shape[0], -1)
|
79 |
+
return outputs
|
80 |
+
|
81 |
+
def classify_batch(self, wavs, wav_lens=None):
|
82 |
+
"""Performs classification on the top of the encoded features.
|
83 |
+
It returns the posterior probabilities, the index and, if the label
|
84 |
+
encoder is specified it also the text label.
|
85 |
+
Arguments
|
86 |
+
---------
|
87 |
+
wavs : torch.tensor
|
88 |
+
Batch of waveforms [batch, time, channels] or [batch, time]
|
89 |
+
depending on the model. Make sure the sample rate is fs=16000 Hz.
|
90 |
+
wav_lens : torch.tensor
|
91 |
+
Lengths of the waveforms relative to the longest one in the
|
92 |
+
batch, tensor of shape [batch]. The longest one should have
|
93 |
+
relative length 1.0 and others len(waveform) / max_length.
|
94 |
+
Used for ignoring padding.
|
95 |
+
Returns
|
96 |
+
-------
|
97 |
+
out_prob
|
98 |
+
The log posterior probabilities of each class ([batch, N_class])
|
99 |
+
score:
|
100 |
+
It is the value of the log-posterior for the best class ([batch,])
|
101 |
+
index
|
102 |
+
The indexes of the best class ([batch,])
|
103 |
+
text_lab:
|
104 |
+
List with the text labels corresponding to the indexes.
|
105 |
+
(label encoder should be provided).
|
106 |
+
"""
|
107 |
+
outputs = self.encode_batch(wavs, wav_lens)
|
108 |
+
outputs = self.mods.output_mlp(outputs)
|
109 |
+
out_prob = self.hparams.softmax(outputs)
|
110 |
+
score, index = torch.max(out_prob, dim=-1)
|
111 |
+
text_lab = self.hparams.label_encoder.decode_torch(index)
|
112 |
+
return out_prob, score, index, text_lab
|
113 |
+
|
114 |
+
def classify_file(self, path):
|
115 |
+
"""Classifies the given audiofile into the given set of labels.
|
116 |
+
Arguments
|
117 |
+
---------
|
118 |
+
path : str
|
119 |
+
Path to audio file to classify.
|
120 |
+
Returns
|
121 |
+
-------
|
122 |
+
out_prob
|
123 |
+
The log posterior probabilities of each class ([batch, N_class])
|
124 |
+
score:
|
125 |
+
It is the value of the log-posterior for the best class ([batch,])
|
126 |
+
index
|
127 |
+
The indexes of the best class ([batch,])
|
128 |
+
text_lab:
|
129 |
+
List with the text labels corresponding to the indexes.
|
130 |
+
(label encoder should be provided).
|
131 |
+
"""
|
132 |
+
waveform = self.load_audio(path)
|
133 |
+
# Fake a batch:
|
134 |
+
batch = waveform.unsqueeze(0)
|
135 |
+
rel_length = torch.tensor([1.0])
|
136 |
+
outputs = self.encode_batch(batch, rel_length)
|
137 |
+
outputs = self.mods.output_mlp(outputs).squeeze(1)
|
138 |
+
out_prob = self.hparams.softmax(outputs)
|
139 |
+
score, index = torch.max(out_prob, dim=-1)
|
140 |
+
text_lab = self.hparams.label_encoder.decode_torch(index)
|
141 |
+
return out_prob, score, index, text_lab
|
142 |
+
|
143 |
+
def forward(self, wavs, wav_lens=None, normalize=False):
|
144 |
+
return self.encode_batch(
|
145 |
+
wavs=wavs, wav_lens=wav_lens, normalize=normalize
|
146 |
+
)
|
models/model_loader.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
from speechbrain.pretrained.interfaces import foreign_class
|
4 |
+
from faster_whisper import WhisperModel
|
5 |
+
|
6 |
+
|
7 |
+
# -------------------------------
|
8 |
+
# Load Model (Cached)
|
9 |
+
# -------------------------------
|
10 |
+
@st.cache_resource(show_spinner="Loading model...") # making sure we only load the model once per every app instance
|
11 |
+
def load_accent_model():
|
12 |
+
"""Loads custom accent classification model."""
|
13 |
+
if not os.getenv("HF_TOKEN"):
|
14 |
+
st.error("Hugging Face token not found.")
|
15 |
+
st.stop()
|
16 |
+
try:
|
17 |
+
return foreign_class(
|
18 |
+
source="Jzuluaga/accent-id-commonaccent_xlsr-en-english",
|
19 |
+
pymodule_file="custom_interface.py",
|
20 |
+
classname="CustomEncoderWav2vec2Classifier"
|
21 |
+
)
|
22 |
+
except Exception as e:
|
23 |
+
st.error(f"β Error loading model: {e}")
|
24 |
+
st.stop()
|
25 |
+
|
26 |
+
@st.cache_resource(show_spinner="Loading Whisper...")
|
27 |
+
def load_whisper():
|
28 |
+
return WhisperModel("tiny", device="cpu", compute_type="int8_float32")
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ffmpeg
|
requirements.txt
CHANGED
@@ -1,3 +1,29 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit
|
2 |
+
moviepy
|
3 |
+
ffmpeg-python
|
4 |
+
requests
|
5 |
+
speechbrain==0.5.14
|
6 |
+
faster-whisper
|
7 |
+
transformers==4.25.1
|
8 |
+
numpy==1.23.5
|
9 |
+
numba==0.56.4
|
10 |
+
datasets==2.8.0
|
11 |
+
librosa==0.9.2
|
12 |
+
numba==0.56.4
|
13 |
+
scikit-learn==1.3.2
|
14 |
+
ipdb>=0.13.9
|
15 |
+
pandas>=1.5.3
|
16 |
+
huggingface_hub>=0.7.0
|
17 |
+
hyperpyyaml>=0.0.1
|
18 |
+
joblib>=0.14.1
|
19 |
+
packaging
|
20 |
+
pre-commit>=2.3.0
|
21 |
+
sentencepiece>=0.1.91
|
22 |
+
psutil
|
23 |
+
SoundFile>=0.10.2
|
24 |
+
torch==1.11.0
|
25 |
+
torchaudio==0.11.0
|
26 |
+
torchvision== 0.12.0
|
27 |
+
tqdm>=4.42.0
|
28 |
+
yt-dlp
|
29 |
+
pydub
|
utils/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
|
utils/accent_analysis.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torchaudio
|
3 |
+
import streamlit as st
|
4 |
+
import traceback
|
5 |
+
import psutil
|
6 |
+
|
7 |
+
|
8 |
+
# Accent label map
|
9 |
+
ACCENT_LABELS = {
|
10 |
+
"us": "American Accent",
|
11 |
+
"england": "British Accent",
|
12 |
+
"australia": "Australian Accent",
|
13 |
+
"indian": "Indian Accent",
|
14 |
+
"canada": "Canadian Accent",
|
15 |
+
"bermuda": "Bermudian Accent",
|
16 |
+
"scotland": "Scottish Accent",
|
17 |
+
"african": "African Accent",
|
18 |
+
"ireland": "Irish Accent",
|
19 |
+
"newzealand": "New Zealand Accent",
|
20 |
+
"wales": "Welsh Accent",
|
21 |
+
"malaysia": "Malaysian Accent",
|
22 |
+
"philippines": "Philippine Accent",
|
23 |
+
"singapore": "Singaporean Accent",
|
24 |
+
"hongkong": "Hong Kong Accent",
|
25 |
+
"southatlandtic": "South Atlantic Accent"
|
26 |
+
}
|
27 |
+
|
28 |
+
def analyze_accent(audio_tensor, sample_rate, model):
|
29 |
+
"""Classifies audio to identify English accent."""
|
30 |
+
try:
|
31 |
+
# Convert stereo to mono (if needed)
|
32 |
+
if audio_tensor.shape[0] > 1:
|
33 |
+
audio_tensor = audio_tensor.mean(dim=0, keepdim=True)
|
34 |
+
audio_tensor = audio_tensor.squeeze(0).unsqueeze(0).to(torch.float32)
|
35 |
+
|
36 |
+
# Convert to 16kHz if needed
|
37 |
+
if sample_rate != 16000:
|
38 |
+
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
|
39 |
+
audio_tensor = resampler(audio_tensor)
|
40 |
+
|
41 |
+
audio_tensor = audio_tensor.to("cpu")
|
42 |
+
with torch.no_grad():
|
43 |
+
# Perform Classification
|
44 |
+
out_prob, score, index, text_lab = model.classify_batch(audio_tensor)
|
45 |
+
accent_label = text_lab[0]
|
46 |
+
readable = ACCENT_LABELS.get(accent_label, accent_label.title() + " accent")
|
47 |
+
return readable, round(score[0].item() * 100, 2)
|
48 |
+
except Exception:
|
49 |
+
st.error("β Error during classification.")
|
50 |
+
st.code(traceback.format_exc())
|
51 |
+
return None, None
|
utils/audio_processing.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import tempfile
|
3 |
+
import subprocess
|
4 |
+
import streamlit as st
|
5 |
+
from pydub import AudioSegment
|
6 |
+
import shutil
|
7 |
+
|
8 |
+
AudioSegment.converter = shutil.which("ffmpeg")
|
9 |
+
|
10 |
+
# -------------------------------
|
11 |
+
# Utility Function: Download audio from a Video url
|
12 |
+
# -------------------------------
|
13 |
+
def download_audio_as_wav(url, max_filesize_mb=70):
|
14 |
+
"""
|
15 |
+
Downloads audio from a URL using yt-dlp, then converts it to WAV using ffmpeg.
|
16 |
+
Supports fallback formats (.m4a, .webm, .opus) if .mp3 not found.
|
17 |
+
Cleans up temporary files after use.
|
18 |
+
Returns path to .wav file or None on failure.
|
19 |
+
"""
|
20 |
+
audio_path = None
|
21 |
+
temp_wav = None
|
22 |
+
|
23 |
+
try:
|
24 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
25 |
+
max_bytes = max_filesize_mb * 1024 * 1024
|
26 |
+
output_template = os.path.join(temp_dir, "audio.%(ext)s")
|
27 |
+
|
28 |
+
# yt-dlp download command
|
29 |
+
download_cmd = [
|
30 |
+
"yt-dlp",
|
31 |
+
"-f", f"bestaudio[filesize<={max_bytes}]",
|
32 |
+
"--extract-audio",
|
33 |
+
"--audio-format", "mp3",
|
34 |
+
"--no-playlist",
|
35 |
+
"--no-cache-dir",
|
36 |
+
"--restrict-filenames",
|
37 |
+
"-o", output_template,
|
38 |
+
url
|
39 |
+
]
|
40 |
+
|
41 |
+
subprocess.run(download_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True)
|
42 |
+
|
43 |
+
# Try to locate audio file (mp3 or fallback)
|
44 |
+
common_exts = [".mp3", ".m4a", ".webm", ".opus"]
|
45 |
+
for ext in common_exts:
|
46 |
+
matches = [f for f in os.listdir(temp_dir) if f.endswith(ext)]
|
47 |
+
if matches:
|
48 |
+
audio_path = os.path.join(temp_dir, matches[0])
|
49 |
+
break
|
50 |
+
|
51 |
+
if not audio_path or not os.path.exists(audio_path):
|
52 |
+
st.error("β No supported audio file found after download.")
|
53 |
+
return None
|
54 |
+
|
55 |
+
# Convert to WAV (outside temp_dir so it persists)
|
56 |
+
temp_wav = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
|
57 |
+
convert_cmd = ["ffmpeg", "-y", "-i", audio_path, temp_wav.name]
|
58 |
+
subprocess.run(convert_cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE, check=True)
|
59 |
+
|
60 |
+
# Return WAV file path; temp_dir and downloaded audio cleaned automatically
|
61 |
+
return temp_wav.name
|
62 |
+
|
63 |
+
except subprocess.CalledProcessError as e:
|
64 |
+
error_msg = e.stderr.decode() if hasattr(e, "stderr") else str(e)
|
65 |
+
if "st" in globals():
|
66 |
+
st.error("β Audio download or conversion failed.")
|
67 |
+
st.code(error_msg)
|
68 |
+
else:
|
69 |
+
print("Error during processing:", error_msg)
|
70 |
+
# Cleanup wav if created
|
71 |
+
if temp_wav is not None and os.path.exists(temp_wav.name):
|
72 |
+
os.remove(temp_wav.name)
|
73 |
+
return None
|
74 |
+
|
75 |
+
except Exception as e:
|
76 |
+
if "st" in globals():
|
77 |
+
st.error("β Unexpected error occurred.")
|
78 |
+
st.code(str(e))
|
79 |
+
else:
|
80 |
+
print("Unexpected error:", e)
|
81 |
+
if temp_wav is not None and os.path.exists(temp_wav.name):
|
82 |
+
os.remove(temp_wav.name)
|
83 |
+
return None
|
84 |
+
|
85 |
+
# --------------------------
|
86 |
+
# Utility: Trim audios to 2 minutes
|
87 |
+
# --------------------------
|
88 |
+
def trim_audio(input_wav_path, max_duration_sec=120):
|
89 |
+
"""
|
90 |
+
Trims the input .wav file to the first `max_duration_sec` seconds.
|
91 |
+
Returns the path to the trimmed .wav file.
|
92 |
+
"""
|
93 |
+
try:
|
94 |
+
# Load audio using pydub
|
95 |
+
audio = AudioSegment.from_wav(input_wav_path)
|
96 |
+
|
97 |
+
# Trim to max_duration_sec
|
98 |
+
trimmed_audio = audio[:max_duration_sec * 1000] # pydub uses milliseconds
|
99 |
+
# Save to a new temporary .wav file
|
100 |
+
trimmed_file = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
|
101 |
+
trimmed_audio.export(trimmed_file.name, format="wav")
|
102 |
+
|
103 |
+
return trimmed_file.name
|
104 |
+
|
105 |
+
except Exception as e:
|
106 |
+
st.error(f"β Error trimming audio: {e}")
|
107 |
+
if trimmed_file and os.path.exists(trimmed_file.name):
|
108 |
+
os.remove(trimmed_file.name)
|
109 |
+
return None
|
utils/session_utils.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import psutil
|
3 |
+
|
4 |
+
# -------------------------------
|
5 |
+
# Manage Station state variables
|
6 |
+
# -------------------------------
|
7 |
+
|
8 |
+
def initialize_session_state():
|
9 |
+
defaults = {
|
10 |
+
"audio_path": None,
|
11 |
+
"audio_ready": False,
|
12 |
+
"transcription": "",
|
13 |
+
}
|
14 |
+
for k, v in defaults.items():
|
15 |
+
if k not in st.session_state:
|
16 |
+
st.session_state[k] = v
|
17 |
+
|
18 |
+
# π Show memory info after
|
19 |
+
def display_memory_once():
|
20 |
+
if 'memory_logged' not in st.session_state:
|
21 |
+
mem = psutil.virtual_memory()
|
22 |
+
st.markdown(f"π§ **Memory Used:** {mem.percent}%")
|
23 |
+
st.session_state.memory_logged = True
|
24 |
+
|
25 |
+
# Reset the app
|
26 |
+
def reset_session_state_except_model():
|
27 |
+
keys_to_keep = {"classifier", "whisper"}
|
28 |
+
for key in list(st.session_state.keys()):
|
29 |
+
if key not in keys_to_keep:
|
30 |
+
del st.session_state[key]
|
utils/video_processing.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import tempfile
|
2 |
+
import subprocess
|
3 |
+
import os
|
4 |
+
from moviepy.editor import VideoFileClip
|
5 |
+
import streamlit as st
|
6 |
+
import traceback
|
7 |
+
import shutil
|
8 |
+
|
9 |
+
|
10 |
+
# --------------------------
|
11 |
+
# Utility: Trim videos to 2 minutes
|
12 |
+
# --------------------------
|
13 |
+
def trim_video(video_path, max_duration=120):
|
14 |
+
"""Trims video to max_duration (in seconds) and extracts audio."""
|
15 |
+
try:
|
16 |
+
video = VideoFileClip(video_path)
|
17 |
+
duration = video.duration
|
18 |
+
video.close()
|
19 |
+
|
20 |
+
audio_path = tempfile.NamedTemporaryFile(delete=False, suffix=".wav").name
|
21 |
+
command = [
|
22 |
+
"ffmpeg", "-i", video_path,
|
23 |
+
"-t", str(min(duration, max_duration)),
|
24 |
+
"-ar", "16000", "-ac", "1",
|
25 |
+
"-acodec", "pcm_s16le", "-y", audio_path
|
26 |
+
]
|
27 |
+
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
28 |
+
if result.returncode != 0:
|
29 |
+
st.error("β ffmpeg audio extraction failed.")
|
30 |
+
os.remove(audio_path) # Clean up failed temp file
|
31 |
+
st.code(result.stderr.decode())
|
32 |
+
return None
|
33 |
+
|
34 |
+
return audio_path
|
35 |
+
except Exception as e:
|
36 |
+
st.error(f"β Error trimming video: {e}")
|
37 |
+
os.remove(audio_path)
|
38 |
+
st.code(traceback.format_exc())
|
39 |
+
return None
|
40 |
+
|
41 |
+
finally:
|
42 |
+
# Clean up input video if it was a temp file
|
43 |
+
if "tmp" in video_path and os.path.exists(video_path):
|
44 |
+
try:
|
45 |
+
os.remove(video_path)
|
46 |
+
except Exception:
|
47 |
+
pass # Avoid crashing on cleanup
|