File size: 16,203 Bytes
773c7bd 376b5d9 773c7bd 37fb699 376b5d9 37fb699 773c7bd d9a3d58 376b5d9 773c7bd a9df8bc 37fb699 773c7bd 37fb699 d9a3d58 37fb699 376b5d9 773c7bd 37fb699 d9a3d58 773c7bd 37fb699 773c7bd 37fb699 773c7bd 37fb699 773c7bd 37fb699 f58d262 b8fd884 f58d262 37fb699 f58d262 d9a3d58 f58d262 37fb699 c22ba72 37fb699 6f0b0f2 37fb699 6f0b0f2 37fb699 cbf80df 37fb699 cbf80df 37fb699 cbf80df 37fb699 cbf80df 37fb699 d9a3d58 37fb699 d9a3d58 11019ca 37fb699 c837795 f58d262 b8fd884 c837795 c9207a5 d9a3d58 c837795 d9a3d58 c9207a5 c837795 773c7bd d9a3d58 c837795 773c7bd c837795 d9a3d58 c9207a5 d9a3d58 f58d262 d9a3d58 c837795 f58d262 c837795 d9a3d58 c837795 d9a3d58 c837795 f58d262 c837795 d9a3d58 11019ca d9a3d58 11019ca d9a3d58 b8fd884 d9a3d58 c9207a5 773c7bd 37fb699 773c7bd d9a3d58 11019ca d9a3d58 773c7bd 37fb699 773c7bd 11019ca 773c7bd d9a3d58 37fb699 d9a3d58 773c7bd f58d262 d9a3d58 b085276 f58d262 11019ca 773c7bd d9a3d58 773c7bd 11019ca d9a3d58 773c7bd cbf80df 37fb699 773c7bd d9a3d58 6269960 37fb699 773c7bd d9a3d58 37fb699 d9a3d58 c9207a5 376b5d9 37fb699 cbf80df 37fb699 773c7bd f72f303 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 |
import csv
import datetime
import os
import re
import subprocess
import time
import uuid
from io import BytesIO, StringIO
import gradio as gr
import spaces
import torch
import torchaudio
from huggingface_hub import HfApi, hf_hub_download, snapshot_download
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
from vinorm import TTSnorm
from content_generation import create_content # Nhập hàm create_content từ file content_generation.py
from PIL import Image
from pathlib import Path
import requests
import json
import hashlib
# Download for mecab
os.system("python -m unidic download")
# Cấu hình API và mô hình
HF_TOKEN = os.environ.get("HF_TOKEN")
api = HfApi(token=HF_TOKEN)
# Tải mô hình viXTTS
print("Downloading if not downloaded viXTTS")
checkpoint_dir = "model/"
repo_id = "capleaf/viXTTS"
use_deepspeed = False
os.makedirs(checkpoint_dir, exist_ok=True)
required_files = ["model.pth", "config.json", "vocab.json", "speakers_xtts.pth"]
files_in_dir = os.listdir(checkpoint_dir)
if not all(file in files_in_dir for file in required_files):
snapshot_download(
repo_id=repo_id,
repo_type="model",
local_dir=checkpoint_dir,
)
hf_hub_download(
repo_id="coqui/XTTS-v2",
filename="speakers_xtts.pth",
local_dir=checkpoint_dir,
)
xtts_config = os.path.join(checkpoint_dir, "config.json")
config = XttsConfig()
config.load_json(xtts_config)
MODEL = Xtts.init_from_config(config)
MODEL.load_checkpoint(
config, checkpoint_dir=checkpoint_dir, use_deepspeed=use_deepspeed
)
if torch.cuda.is_available():
MODEL.cuda()
supported_languages = config.languages
if "vi" not in supported_languages:
supported_languages.append("vi")
# Hàm chuẩn hóa văn bản tiếng Việt
def normalize_vietnamese_text(text):
text = (
TTSnorm(text, unknown=False, lower=False, rule=True)
.replace("..", ".")
.replace("!.", "!")
.replace("?.", "?")
.replace(" .", ".")
.replace(" ,", ",")
.replace('"', "")
.replace("'", "")
.replace("AI", "Ây Ai")
.replace("A.I", "Ây Ai")
.replace("%", "phần trăm")
)
return text
# Hàm tính toán độ dài giữ lại cho audio ngắn
def calculate_keep_len(text, lang):
"""Simple hack for short sentences"""
if lang in ["ja", "zh-cn"]:
return -1
word_count = len(text.split())
num_punct = text.count(".") + text.count("!") + text.count("?") + text.count(",")
if word_count < 5:
return 15000 * word_count + 2000 * num_punct
elif word_count < 10:
return 13000 * word_count + 2000 * num_punct
return -1
# Hàm tạo mô tả ảnh từ nội dung audio
def generate_image_description(prompt):
return f"A visual representation of: {prompt}"
# Hàm gọi API tạo ảnh
def txt2img(prompt, width, height):
model_id = "770694094415489962" # Model ID cố định
vae_id = "sdxl-vae-fp16-fix.safetensors" # VAE cố định
lora_items = [
{"loraModel": "766419665653268679", "weight": 0.7},
{"loraModel": "777630084346589138", "weight": 0.7},
{"loraModel": "776587863287492519", "weight": 0.7}
]
txt2img_data = {
"request_id": hashlib.md5(str(int(time.time())).encode()).hexdigest(),
"stages": [
{
"type": "INPUT_INITIALIZE",
"inputInitialize": {
"seed": -1,
"count": 1
}
},
{
"type": "DIFFUSION",
"diffusion": {
"width": width,
"height": height,
"prompts": [
{
"text": prompt
}
],
"negativePrompts": [
{
"text": "nsfw"
}
],
"sdModel": model_id,
"sdVae": vae_id,
"sampler": "Euler a",
"steps": 20,
"cfgScale": 3,
"clipSkip": 1,
"etaNoiseSeedDelta": 31337,
"lora": {
"items": lora_items
}
}
}
]
}
body = json.dumps(txt2img_data)
headers = {
'Content-Type': 'application/json',
'Accept': 'application/json',
'Authorization': f'Bearer {os.getenv("api_key_token")}'
}
response = requests.post(f"https://ap-east-1.tensorart.cloud/v1/jobs", json=txt2img_data, headers=headers)
if response.status_code != 200:
return f"Error: {response.status_code} - {response.text}"
response_data = response.json()
job_id = response_data['job']['id']
print(f"Job created. ID: {job_id}")
start_time = time.time()
timeout = 300 # Giới hạn thời gian chờ là 300 giây (5 phút)
while True:
time.sleep(10)
elapsed_time = time.time() - start_time
if elapsed_time > timeout:
return f"Error: Job timed out after {timeout} seconds."
response = requests.get(f"https://ap-east-1.tensorart.cloud/v1/jobs/{job_id}", headers=headers)
if response.status_code != 200:
return f"Error: {response.status_code} - {response.text}"
get_job_response_data = response.json()
job_status = get_job_response_data['job']['status']
print(f"Job status: {job_status}")
if job_status == 'SUCCESS':
if 'successInfo' in get_job_response_data['job']:
image_url = get_job_response_data['job']['successInfo']['images'][0]['url']
print(f"Job succeeded. Image URL: {image_url}")
response_image = requests.get(image_url)
img = Image.open(BytesIO(response_image.content))
return img
else:
return "Error: Output is missing in the job response."
elif job_status == 'FAILED':
return "Error: Job failed. Please try again with different settings."
# Hàm tạo video từ ảnh và audio
def create_video(image_path, audio_path, output_path):
command = [
"ffmpeg",
"-i", image_path,
"-i", audio_path,
"-filter_complex",
"[1:a]aformat=channel_layouts=mono,showwaves=s=1200x400:mode=p2p:colors=blue@0.8[w];[0:v][w]overlay=(W-w)/2:(H-h)/2",
"-c:v", "libx264",
"-b:v", "2000k",
"-c:a", "aac",
"-b:a", "192k",
"-y", output_path
]
subprocess.run(command, check=True)
# Hàm xử lý sự kiện khi nhấn nút "Tạo Video"
def generate_video(prompt, language, audio_file_pth, normalize_text, use_llm, content_type):
# Bước 1: Tạo audio nếu chưa có
if not os.path.exists("output.wav"):
audio_file, metrics_text = predict(prompt, language, audio_file_pth, normalize_text, use_llm, content_type)
if not audio_file:
return None, metrics_text
else:
audio_file = "output.wav"
# Bước 2: Tạo mô tả ảnh
image_description = generate_image_description(prompt)
# Bước 3: Gọi API tạo ảnh
try:
image = txt2img(image_description, width=800, height=600)
if isinstance(image, str): # Nếu có lỗi từ API
return None, image
# Lưu ảnh vào thư mục
image_path = os.path.join(SAVE_DIR, "generated_image.png")
image.save(image_path)
except Exception as e:
return None, f"Error generating image: {str(e)}"
# Bước 4: Tạo video từ ảnh và audio
video_output_path = os.path.join(SAVE_DIR, "output_video.mp4")
try:
create_video(image_path, audio_file, video_output_path)
except Exception as e:
return None, f"Error creating video: {str(e)}"
return video_output_path, "Video created successfully!"
# Thư mục lưu trữ ảnh và video
SAVE_DIR = "generated_images"
Path(SAVE_DIR).mkdir(exist_ok=True)
# Hàm dự đoán và tạo audio
@spaces.GPU
def predict(
prompt,
language,
audio_file_pth,
normalize_text=True,
use_llm=False,
content_type="Theo yêu cầu",
):
if use_llm:
print("I: Generating text with LLM...")
generated_text = create_content(prompt, content_type, language)
print(f"Generated text: {generated_text}")
prompt = generated_text
if language not in supported_languages:
metrics_text = gr.Warning(
f"Language you put {language} in is not in our Supported Languages, please choose from dropdown"
)
return (None, metrics_text)
speaker_wav = audio_file_pth
if len(prompt) < 2:
metrics_text = gr.Warning("Please give a longer prompt text")
return (None, metrics_text)
try:
metrics_text = ""
t_latent = time.time()
try:
(
gpt_cond_latent,
speaker_embedding,
) = MODEL.get_conditioning_latents(
audio_path=speaker_wav,
gpt_cond_len=30,
gpt_cond_chunk_len=4,
max_ref_length=60,
)
except Exception as e:
print("Speaker encoding error", str(e))
metrics_text = gr.Warning(
"It appears something wrong with reference, did you unmute your microphone?"
)
return (None, metrics_text)
prompt = re.sub("([^\x00-\x7F]|\w)(\.|\。|\?)", r"\1 \2\2", prompt)
if normalize_text and language == "vi":
prompt = normalize_vietnamese_text(prompt)
print("I: Generating new audio...")
t0 = time.time()
out = MODEL.inference(
prompt,
language,
gpt_cond_latent,
speaker_embedding,
repetition_penalty=5.0,
temperature=0.75,
enable_text_splitting=True,
)
inference_time = time.time() - t0
print(f"I: Time to generate audio: {round(inference_time*1000)} milliseconds")
metrics_text += (
f"Time to generate audio: {round(inference_time*1000)} milliseconds\n"
)
real_time_factor = (time.time() - t0) / out["wav"].shape[-1] * 24000
print(f"Real-time factor (RTF): {real_time_factor}")
metrics_text += f"Real-time factor (RTF): {real_time_factor:.2f}\n"
keep_len = calculate_keep_len(prompt, language)
out["wav"] = out["wav"][:keep_len]
torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
except RuntimeError as e:
if "device-side assert" in str(e):
print(
f"Exit due to: Unrecoverable exception caused by language:{language} prompt:{prompt}",
flush=True,
)
gr.Warning("Unhandled Exception encounter, please retry in a minute")
print("Cuda device-assert Runtime encountered need restart")
error_time = datetime.datetime.now().strftime("%d-%m-%Y-%H:%M:%S")
error_data = [
error_time,
prompt,
language,
audio_file_pth,
]
error_data = [str(e) if type(e) != str else e for e in error_data]
print(error_data)
print(speaker_wav)
write_io = StringIO()
csv.writer(write_io).writerows([error_data])
csv_upload = write_io.getvalue().encode()
filename = error_time + "_" + str(uuid.uuid4()) + ".csv"
print("Writing error csv")
error_api = HfApi()
error_api.upload_file(
path_or_fileobj=csv_upload,
path_in_repo=filename,
repo_id="coqui/xtts-flagged-dataset",
repo_type="dataset",
)
speaker_filename = error_time + "_reference_" + str(uuid.uuid4()) + ".wav"
error_api = HfApi()
error_api.upload_file(
path_or_fileobj=speaker_wav,
path_in_repo=speaker_filename,
repo_id="coqui/xtts-flagged-dataset",
repo_type="dataset",
)
space = api.get_space_runtime(repo_id=repo_id)
if space.stage != "BUILDING":
api.restart_space(repo_id=repo_id)
else:
print("TRIED TO RESTART but space is building")
else:
if "Failed to decode" in str(e):
print("Speaker encoding error", str(e))
metrics_text = gr.Warning(
"It appears something wrong with reference, did you unmute your microphone?"
)
else:
print("RuntimeError: non device-side assert error:", str(e))
metrics_text = gr.Warning(
"Something unexpected happened please retry again."
)
return (None, metrics_text)
return ("output.wav", metrics_text)
# Giao diện Gradio
with gr.Blocks(analytics_enabled=False) as demo:
with gr.Row():
with gr.Column():
gr.Markdown(
"""
# tts@TDNM ✨ https:www.tdn-m.com
"""
)
with gr.Column():
pass
with gr.Row():
with gr.Column():
input_text_gr = gr.Textbox(
label="Bạn cần nội dung gì?",
info="Tôi có thể viết và thu âm luôn cho bạn",
value="Lời tự sự của AI, 150 từ",
)
language_gr = gr.Dropdown(
label="Language (Ngôn ngữ)",
choices=[
"vi", "en", "es", "fr", "de", "it", "pt", "pl", "tr", "ru", "nl", "cs", "ar", "zh-cn", "ja", "ko", "hu", "hi",
],
max_choices=1,
value="vi",
)
normalize_text = gr.Checkbox(
label="Chuẩn hóa văn bản tiếng Việt",
info="Normalize Vietnamese text",
value=True,
)
use_llm_checkbox = gr.Checkbox(
label="Sử dụng LLM để tạo nội dung",
info="Use LLM to generate content",
value=True,
)
content_type_dropdown = gr.Dropdown(
label="Loại nội dung",
choices=["triết lý sống", "Theo yêu cầu"],
value="Theo yêu cầu",
)
ref_gr = gr.Audio(
label="Reference Audio (Giọng mẫu)",
type="filepath",
value="nam-tai-llieu.wav",
)
tts_button = gr.Button(
"Đọc 🗣️🔥",
elem_id="send-btn",
visible=True,
variant="primary",
)
video_button = gr.Button("Tạo Video 🎥", visible=True) # Nút tạo video luôn hiển thị
with gr.Column():
audio_gr = gr.Audio(label="Synthesised Audio", autoplay=True)
out_text_gr = gr.Text(label="Metrics")
video_output = gr.Video(label="Generated Video", visible=True) # Hiển thị video
video_status = gr.Text(label="Video Status")
tts_button.click(
predict,
[
input_text_gr,
language_gr,
ref_gr,
normalize_text,
use_llm_checkbox,
content_type_dropdown,
],
outputs=[audio_gr, out_text_gr],
api_name="predict",
)
video_button.click(
generate_video,
inputs=[
input_text_gr,
language_gr,
ref_gr,
normalize_text,
use_llm_checkbox,
content_type_dropdown,
],
outputs=[video_output, video_status],
)
demo.queue()
demo.launch(debug=True, show_api=True, share=True) |