Spaces:
TDN-M
/
Running on Zero

File size: 16,203 Bytes
773c7bd
 
376b5d9
773c7bd
37fb699
376b5d9
 
37fb699
773c7bd
d9a3d58
376b5d9
 
 
773c7bd
 
 
a9df8bc
37fb699
 
 
 
 
773c7bd
37fb699
d9a3d58
37fb699
 
376b5d9
773c7bd
 
37fb699
d9a3d58
773c7bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
37fb699
773c7bd
 
 
 
 
 
 
 
 
37fb699
773c7bd
37fb699
773c7bd
 
37fb699
f58d262
 
 
 
 
 
 
 
 
 
 
 
b8fd884
f58d262
 
 
37fb699
f58d262
d9a3d58
f58d262
 
 
 
 
 
 
 
 
 
37fb699
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c22ba72
37fb699
6f0b0f2
37fb699
6f0b0f2
37fb699
 
 
 
 
cbf80df
 
 
 
 
 
 
 
 
 
37fb699
cbf80df
 
37fb699
 
 
 
 
 
 
 
 
 
cbf80df
 
37fb699
 
 
 
 
cbf80df
37fb699
 
 
 
 
 
 
d9a3d58
 
 
 
 
 
37fb699
 
d9a3d58
11019ca
 
 
 
37fb699
c837795
f58d262
b8fd884
c837795
c9207a5
d9a3d58
c837795
d9a3d58
c9207a5
c837795
 
 
773c7bd
d9a3d58
 
 
 
 
c837795
 
 
773c7bd
c837795
d9a3d58
 
 
 
c9207a5
d9a3d58
f58d262
 
d9a3d58
c837795
 
 
 
 
 
 
 
f58d262
c837795
 
d9a3d58
 
 
 
c837795
d9a3d58
c837795
f58d262
 
c837795
 
d9a3d58
 
 
 
 
 
11019ca
d9a3d58
 
 
 
 
 
 
 
 
 
 
 
 
 
11019ca
d9a3d58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8fd884
d9a3d58
 
 
 
 
 
c9207a5
 
773c7bd
37fb699
773c7bd
 
 
d9a3d58
 
11019ca
d9a3d58
 
773c7bd
 
37fb699
773c7bd
 
 
11019ca
 
 
773c7bd
 
d9a3d58
 
37fb699
d9a3d58
 
773c7bd
 
f58d262
d9a3d58
 
b085276
f58d262
11019ca
 
 
 
 
 
 
 
 
 
773c7bd
d9a3d58
773c7bd
11019ca
d9a3d58
 
 
 
 
 
773c7bd
cbf80df
37fb699
773c7bd
 
d9a3d58
6269960
37fb699
 
773c7bd
 
d9a3d58
 
 
 
 
37fb699
 
d9a3d58
c9207a5
376b5d9
37fb699
 
 
 
cbf80df
 
 
 
 
 
 
 
37fb699
773c7bd
 
 
f72f303
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
import csv
import datetime
import os
import re
import subprocess
import time
import uuid
from io import BytesIO, StringIO
import gradio as gr
import spaces
import torch
import torchaudio
from huggingface_hub import HfApi, hf_hub_download, snapshot_download
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
from vinorm import TTSnorm
from content_generation import create_content  # Nhập hàm create_content từ file content_generation.py
from PIL import Image
from pathlib import Path
import requests
import json
import hashlib

# Download for mecab
os.system("python -m unidic download")

# Cấu hình API và mô hình
HF_TOKEN = os.environ.get("HF_TOKEN")
api = HfApi(token=HF_TOKEN)

# Tải mô hình viXTTS
print("Downloading if not downloaded viXTTS")
checkpoint_dir = "model/"
repo_id = "capleaf/viXTTS"
use_deepspeed = False
os.makedirs(checkpoint_dir, exist_ok=True)
required_files = ["model.pth", "config.json", "vocab.json", "speakers_xtts.pth"]
files_in_dir = os.listdir(checkpoint_dir)
if not all(file in files_in_dir for file in required_files):
    snapshot_download(
        repo_id=repo_id,
        repo_type="model",
        local_dir=checkpoint_dir,
    )
    hf_hub_download(
        repo_id="coqui/XTTS-v2",
        filename="speakers_xtts.pth",
        local_dir=checkpoint_dir,
    )

xtts_config = os.path.join(checkpoint_dir, "config.json")
config = XttsConfig()
config.load_json(xtts_config)
MODEL = Xtts.init_from_config(config)
MODEL.load_checkpoint(
    config, checkpoint_dir=checkpoint_dir, use_deepspeed=use_deepspeed
)
if torch.cuda.is_available():
    MODEL.cuda()

supported_languages = config.languages
if "vi" not in supported_languages:
    supported_languages.append("vi")

# Hàm chuẩn hóa văn bản tiếng Việt
def normalize_vietnamese_text(text):
    text = (
        TTSnorm(text, unknown=False, lower=False, rule=True)
        .replace("..", ".")
        .replace("!.", "!")
        .replace("?.", "?")
        .replace(" .", ".")
        .replace(" ,", ",")
        .replace('"', "")
        .replace("'", "")
        .replace("AI", "Ây Ai")
        .replace("A.I", "Ây Ai")
        .replace("%", "phần trăm")
    )
    return text

# Hàm tính toán độ dài giữ lại cho audio ngắn
def calculate_keep_len(text, lang):
    """Simple hack for short sentences"""
    if lang in ["ja", "zh-cn"]:
        return -1
    word_count = len(text.split())
    num_punct = text.count(".") + text.count("!") + text.count("?") + text.count(",")
    if word_count < 5:
        return 15000 * word_count + 2000 * num_punct
    elif word_count < 10:
        return 13000 * word_count + 2000 * num_punct
    return -1

# Hàm tạo mô tả ảnh từ nội dung audio
def generate_image_description(prompt):
    return f"A visual representation of: {prompt}"

# Hàm gọi API tạo ảnh
def txt2img(prompt, width, height):
    model_id = "770694094415489962"  # Model ID cố định
    vae_id = "sdxl-vae-fp16-fix.safetensors"  # VAE cố định
    lora_items = [
        {"loraModel": "766419665653268679", "weight": 0.7},
        {"loraModel": "777630084346589138", "weight": 0.7},
        {"loraModel": "776587863287492519", "weight": 0.7}
    ]
    txt2img_data = {
        "request_id": hashlib.md5(str(int(time.time())).encode()).hexdigest(),
        "stages": [
            {
                "type": "INPUT_INITIALIZE",
                "inputInitialize": {
                    "seed": -1,
                    "count": 1
                }
            },
            {
                "type": "DIFFUSION",
                "diffusion": {
                    "width": width,
                    "height": height,
                    "prompts": [
                        {
                            "text": prompt
                        }
                    ],
                    "negativePrompts": [
                        {
                            "text": "nsfw"
                        }
                    ],
                    "sdModel": model_id,
                    "sdVae": vae_id,
                    "sampler": "Euler a",
                    "steps": 20,
                    "cfgScale": 3,
                    "clipSkip": 1,
                    "etaNoiseSeedDelta": 31337,
                    "lora": {
                        "items": lora_items
                    }
                }
            }
        ]
    }
    body = json.dumps(txt2img_data)
    headers = {
        'Content-Type': 'application/json',
        'Accept': 'application/json',
        'Authorization': f'Bearer {os.getenv("api_key_token")}'
    }
    response = requests.post(f"https://ap-east-1.tensorart.cloud/v1/jobs", json=txt2img_data, headers=headers)
    if response.status_code != 200:
        return f"Error: {response.status_code} - {response.text}"
    response_data = response.json()
    job_id = response_data['job']['id']
    print(f"Job created. ID: {job_id}")
    start_time = time.time()
    timeout = 300  # Giới hạn thời gian chờ là 300 giây (5 phút)
    while True:
        time.sleep(10)
        elapsed_time = time.time() - start_time
        if elapsed_time > timeout:
            return f"Error: Job timed out after {timeout} seconds."
        response = requests.get(f"https://ap-east-1.tensorart.cloud/v1/jobs/{job_id}", headers=headers)
        if response.status_code != 200:
            return f"Error: {response.status_code} - {response.text}"
        get_job_response_data = response.json()
        job_status = get_job_response_data['job']['status']
        print(f"Job status: {job_status}")
        if job_status == 'SUCCESS':
            if 'successInfo' in get_job_response_data['job']:
                image_url = get_job_response_data['job']['successInfo']['images'][0]['url']
                print(f"Job succeeded. Image URL: {image_url}")
                response_image = requests.get(image_url)
                img = Image.open(BytesIO(response_image.content))
                return img
            else:
                return "Error: Output is missing in the job response."
        elif job_status == 'FAILED':
            return "Error: Job failed. Please try again with different settings."

# Hàm tạo video từ ảnh và audio
def create_video(image_path, audio_path, output_path):
    command = [
        "ffmpeg",
        "-i", image_path,
        "-i", audio_path,
        "-filter_complex",
        "[1:a]aformat=channel_layouts=mono,showwaves=s=1200x400:mode=p2p:colors=blue@0.8[w];[0:v][w]overlay=(W-w)/2:(H-h)/2",
        "-c:v", "libx264",
        "-b:v", "2000k",
        "-c:a", "aac",
        "-b:a", "192k",
        "-y", output_path
    ]
    subprocess.run(command, check=True)

# Hàm xử lý sự kiện khi nhấn nút "Tạo Video"
def generate_video(prompt, language, audio_file_pth, normalize_text, use_llm, content_type):
    # Bước 1: Tạo audio nếu chưa có
    if not os.path.exists("output.wav"):
        audio_file, metrics_text = predict(prompt, language, audio_file_pth, normalize_text, use_llm, content_type)
        if not audio_file:
            return None, metrics_text
    else:
        audio_file = "output.wav"

    # Bước 2: Tạo mô tả ảnh
    image_description = generate_image_description(prompt)

    # Bước 3: Gọi API tạo ảnh
    try:
        image = txt2img(image_description, width=800, height=600)
        if isinstance(image, str):  # Nếu có lỗi từ API
            return None, image
        
        # Lưu ảnh vào thư mục
        image_path = os.path.join(SAVE_DIR, "generated_image.png")
        image.save(image_path)
    except Exception as e:
        return None, f"Error generating image: {str(e)}"

    # Bước 4: Tạo video từ ảnh và audio
    video_output_path = os.path.join(SAVE_DIR, "output_video.mp4")
    try:
        create_video(image_path, audio_file, video_output_path)
    except Exception as e:
        return None, f"Error creating video: {str(e)}"

    return video_output_path, "Video created successfully!"

# Thư mục lưu trữ ảnh và video
SAVE_DIR = "generated_images"
Path(SAVE_DIR).mkdir(exist_ok=True)

# Hàm dự đoán và tạo audio
@spaces.GPU
def predict(
    prompt,
    language,
    audio_file_pth,
    normalize_text=True,
    use_llm=False,
    content_type="Theo yêu cầu",
):
    if use_llm:
        print("I: Generating text with LLM...")
        generated_text = create_content(prompt, content_type, language)
        print(f"Generated text: {generated_text}")
        prompt = generated_text
    if language not in supported_languages:
        metrics_text = gr.Warning(
            f"Language you put {language} in is not in our Supported Languages, please choose from dropdown"
        )
        return (None, metrics_text)
    speaker_wav = audio_file_pth
    if len(prompt) < 2:
        metrics_text = gr.Warning("Please give a longer prompt text")
        return (None, metrics_text)
    try:
        metrics_text = ""
        t_latent = time.time()
        try:
            (
                gpt_cond_latent,
                speaker_embedding,
            ) = MODEL.get_conditioning_latents(
                audio_path=speaker_wav,
                gpt_cond_len=30,
                gpt_cond_chunk_len=4,
                max_ref_length=60,
            )
        except Exception as e:
            print("Speaker encoding error", str(e))
            metrics_text = gr.Warning(
                "It appears something wrong with reference, did you unmute your microphone?"
            )
            return (None, metrics_text)
        prompt = re.sub("([^\x00-\x7F]|\w)(\.|\。|\?)", r"\1 \2\2", prompt)
        if normalize_text and language == "vi":
            prompt = normalize_vietnamese_text(prompt)
        print("I: Generating new audio...")
        t0 = time.time()
        out = MODEL.inference(
            prompt,
            language,
            gpt_cond_latent,
            speaker_embedding,
            repetition_penalty=5.0,
            temperature=0.75,
            enable_text_splitting=True,
        )
        inference_time = time.time() - t0
        print(f"I: Time to generate audio: {round(inference_time*1000)} milliseconds")
        metrics_text += (
            f"Time to generate audio: {round(inference_time*1000)} milliseconds\n"
        )
        real_time_factor = (time.time() - t0) / out["wav"].shape[-1] * 24000
        print(f"Real-time factor (RTF): {real_time_factor}")
        metrics_text += f"Real-time factor (RTF): {real_time_factor:.2f}\n"
        keep_len = calculate_keep_len(prompt, language)
        out["wav"] = out["wav"][:keep_len]
        torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
    except RuntimeError as e:
        if "device-side assert" in str(e):
            print(
                f"Exit due to: Unrecoverable exception caused by language:{language} prompt:{prompt}",
                flush=True,
            )
            gr.Warning("Unhandled Exception encounter, please retry in a minute")
            print("Cuda device-assert Runtime encountered need restart")
            error_time = datetime.datetime.now().strftime("%d-%m-%Y-%H:%M:%S")
            error_data = [
                error_time,
                prompt,
                language,
                audio_file_pth,
            ]
            error_data = [str(e) if type(e) != str else e for e in error_data]
            print(error_data)
            print(speaker_wav)
            write_io = StringIO()
            csv.writer(write_io).writerows([error_data])
            csv_upload = write_io.getvalue().encode()
            filename = error_time + "_" + str(uuid.uuid4()) + ".csv"
            print("Writing error csv")
            error_api = HfApi()
            error_api.upload_file(
                path_or_fileobj=csv_upload,
                path_in_repo=filename,
                repo_id="coqui/xtts-flagged-dataset",
                repo_type="dataset",
            )
            speaker_filename = error_time + "_reference_" + str(uuid.uuid4()) + ".wav"
            error_api = HfApi()
            error_api.upload_file(
                path_or_fileobj=speaker_wav,
                path_in_repo=speaker_filename,
                repo_id="coqui/xtts-flagged-dataset",
                repo_type="dataset",
            )
            space = api.get_space_runtime(repo_id=repo_id)
            if space.stage != "BUILDING":
                api.restart_space(repo_id=repo_id)
            else:
                print("TRIED TO RESTART but space is building")
        else:
            if "Failed to decode" in str(e):
                print("Speaker encoding error", str(e))
                metrics_text = gr.Warning(
                    "It appears something wrong with reference, did you unmute your microphone?"
                )
            else:
                print("RuntimeError: non device-side assert error:", str(e))
                metrics_text = gr.Warning(
                    "Something unexpected happened please retry again."
                )
            return (None, metrics_text)
    return ("output.wav", metrics_text)

# Giao diện Gradio
with gr.Blocks(analytics_enabled=False) as demo:
    with gr.Row():
        with gr.Column():
            gr.Markdown(
                """
                # tts@TDNM ✨ https:www.tdn-m.com 
                """
            )
        with gr.Column():
            pass
    
    with gr.Row():
        with gr.Column():
            input_text_gr = gr.Textbox(
                label="Bạn cần nội dung gì?",
                info="Tôi có thể viết và thu âm luôn cho bạn",
                value="Lời tự sự của AI, 150 từ",
            )
            language_gr = gr.Dropdown(
                label="Language (Ngôn ngữ)",
                choices=[
                    "vi", "en", "es", "fr", "de", "it", "pt", "pl", "tr", "ru", "nl", "cs", "ar", "zh-cn", "ja", "ko", "hu", "hi",
                ],
                max_choices=1,
                value="vi",
            )
            normalize_text = gr.Checkbox(
                label="Chuẩn hóa văn bản tiếng Việt",
                info="Normalize Vietnamese text",
                value=True,
            )
            use_llm_checkbox = gr.Checkbox(
                label="Sử dụng LLM để tạo nội dung",
                info="Use LLM to generate content",
                value=True,
            )
            content_type_dropdown = gr.Dropdown(
                label="Loại nội dung",
                choices=["triết lý sống", "Theo yêu cầu"],
                value="Theo yêu cầu",
            )
            ref_gr = gr.Audio(
                label="Reference Audio (Giọng mẫu)",
                type="filepath",
                value="nam-tai-llieu.wav",
            )
            tts_button = gr.Button(
                "Đọc 🗣️🔥",
                elem_id="send-btn",
                visible=True,
                variant="primary",
            )
            video_button = gr.Button("Tạo Video 🎥", visible=True)  # Nút tạo video luôn hiển thị
        
        with gr.Column():
            audio_gr = gr.Audio(label="Synthesised Audio", autoplay=True)
            out_text_gr = gr.Text(label="Metrics")
            video_output = gr.Video(label="Generated Video", visible=True)  # Hiển thị video
            video_status = gr.Text(label="Video Status")
    
    tts_button.click(
        predict,
        [
            input_text_gr,
            language_gr,
            ref_gr,
            normalize_text,
            use_llm_checkbox,
            content_type_dropdown,
        ],
        outputs=[audio_gr, out_text_gr],
        api_name="predict",
    )
    
    video_button.click(
        generate_video,
        inputs=[
            input_text_gr,
            language_gr,
            ref_gr,
            normalize_text,
            use_llm_checkbox,
            content_type_dropdown,
        ],
        outputs=[video_output, video_status],
    )

demo.queue()
demo.launch(debug=True, show_api=True, share=True)