Update app.py
Browse files
app.py
CHANGED
@@ -13,12 +13,9 @@ from huggingface_hub import HfApi, hf_hub_download, snapshot_download
|
|
13 |
from TTS.tts.configs.xtts_config import XttsConfig
|
14 |
from TTS.tts.models.xtts import Xtts
|
15 |
from vinorm import TTSnorm
|
16 |
-
from
|
17 |
-
from langchain.chains import LLMChain
|
18 |
-
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
19 |
-
from langchain_community.llms import HuggingFacePipeline
|
20 |
|
21 |
-
#
|
22 |
os.system("python -m unidic download")
|
23 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
24 |
api = HfApi(token=HF_TOKEN)
|
@@ -55,30 +52,6 @@ supported_languages = config.languages
|
|
55 |
if not "vi" in supported_languages:
|
56 |
supported_languages.append("vi")
|
57 |
|
58 |
-
# Load LangChain components with the new model
|
59 |
-
model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-xl")
|
60 |
-
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-xl")
|
61 |
-
pipe = pipeline(
|
62 |
-
'text2text-generation',
|
63 |
-
model=model,
|
64 |
-
tokenizer=tokenizer,
|
65 |
-
max_length=1024 # Update max_length
|
66 |
-
)
|
67 |
-
local_llm = HuggingFacePipeline(pipeline=pipe)
|
68 |
-
|
69 |
-
# Define the caption_chain function
|
70 |
-
def caption_chain(llm):
|
71 |
-
sum_template = """What is the most significant action, place, or thing? Say it in at most 5 words:
|
72 |
-
|
73 |
-
{sentence}
|
74 |
-
"""
|
75 |
-
sum_prompt = PromptTemplate(template=sum_template, input_variables=["sentence"])
|
76 |
-
sum_llm_chain = LLMChain(prompt=sum_prompt, llm=llm)
|
77 |
-
return sum_llm_chain
|
78 |
-
|
79 |
-
# Initialize the caption_chain and tag_chain
|
80 |
-
llm_chain = caption_chain(llm=local_llm)
|
81 |
-
|
82 |
def normalize_vietnamese_text(text):
|
83 |
text = (
|
84 |
TTSnorm(text, unknown=False, lower=False, rule=True)
|
@@ -113,7 +86,16 @@ def predict(
|
|
113 |
language,
|
114 |
audio_file_pth,
|
115 |
normalize_text=True,
|
|
|
|
|
116 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
117 |
if language not in supported_languages:
|
118 |
metrics_text = gr.Warning(
|
119 |
f"Language you put {language} in is not in our Supported Languages, please choose from dropdown"
|
@@ -148,7 +130,6 @@ def predict(
|
|
148 |
prompt = re.sub("([^\x00-\x7F]|\w)(\.|\。|\?)", r"\1 \2\2", prompt)
|
149 |
if normalize_text and language == "vi":
|
150 |
prompt = normalize_vietnamese_text(prompt)
|
151 |
-
|
152 |
print("I: Generating new audio...")
|
153 |
t0 = time.time()
|
154 |
out = MODEL.inference(
|
@@ -175,13 +156,13 @@ def predict(
|
|
175 |
torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
|
176 |
except RuntimeError as e:
|
177 |
if "device-side assert" in str(e):
|
178 |
-
#
|
179 |
print(
|
180 |
f"Exit due to: Unrecoverable exception caused by language:{language} prompt:{prompt}",
|
181 |
flush=True,
|
182 |
)
|
183 |
gr.Warning("Unhandled Exception encounter, please retry in a minute")
|
184 |
-
print("
|
185 |
error_time = datetime.datetime.now().strftime("%d-%m-%Y-%H:%M:%S")
|
186 |
error_data = [
|
187 |
error_time,
|
@@ -196,7 +177,7 @@ def predict(
|
|
196 |
csv.writer(write_io).writerows([error_data])
|
197 |
csv_upload = write_io.getvalue().encode()
|
198 |
filename = error_time + "_" + str(uuid.uuid4()) + ".csv"
|
199 |
-
print("Writing error
|
200 |
error_api = HfApi()
|
201 |
error_api.upload_file(
|
202 |
path_or_fileobj=csv_upload,
|
@@ -204,7 +185,7 @@ def predict(
|
|
204 |
repo_id="coqui/xtts-flagged-dataset",
|
205 |
repo_type="dataset",
|
206 |
)
|
207 |
-
#
|
208 |
print("Writing error reference audio")
|
209 |
speaker_filename = error_time + "_reference_" + str(uuid.uuid4()) + ".wav"
|
210 |
error_api = HfApi()
|
@@ -234,24 +215,25 @@ def predict(
|
|
234 |
return (None, metrics_text)
|
235 |
return ("output.wav", metrics_text)
|
236 |
|
|
|
237 |
with gr.Blocks(analytics_enabled=False) as demo:
|
238 |
with gr.Row():
|
239 |
with gr.Column():
|
240 |
gr.Markdown(
|
241 |
"""
|
242 |
-
# tts@TDNM ✨ https
|
243 |
"""
|
244 |
)
|
245 |
with gr.Column():
|
246 |
-
#
|
247 |
pass
|
248 |
|
249 |
with gr.Row():
|
250 |
with gr.Column():
|
251 |
input_text_gr = gr.Textbox(
|
252 |
-
label="
|
253 |
-
info="
|
254 |
-
value="
|
255 |
)
|
256 |
language_gr = gr.Dropdown(
|
257 |
label="Language (Ngôn ngữ)",
|
@@ -283,10 +265,20 @@ with gr.Blocks(analytics_enabled=False) as demo:
|
|
283 |
info="Normalize Vietnamese text",
|
284 |
value=True,
|
285 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
286 |
ref_gr = gr.Audio(
|
287 |
label="Reference Audio (Giọng mẫu)",
|
288 |
type="filepath",
|
289 |
-
value="nam-tai-
|
290 |
)
|
291 |
tts_button = gr.Button(
|
292 |
"Đọc 🗣️🔥",
|
@@ -306,6 +298,8 @@ with gr.Blocks(analytics_enabled=False) as demo:
|
|
306 |
language_gr,
|
307 |
ref_gr,
|
308 |
normalize_text,
|
|
|
|
|
309 |
],
|
310 |
outputs=[audio_gr, out_text_gr],
|
311 |
api_name="predict",
|
|
|
13 |
from TTS.tts.configs.xtts_config import XttsConfig
|
14 |
from TTS.tts.models.xtts import Xtts
|
15 |
from vinorm import TTSnorm
|
16 |
+
from content_generation import create_content # Nhập hàm create_content từ file content_generation.py
|
|
|
|
|
|
|
17 |
|
18 |
+
# download for mecab
|
19 |
os.system("python -m unidic download")
|
20 |
HF_TOKEN = os.environ.get("HF_TOKEN")
|
21 |
api = HfApi(token=HF_TOKEN)
|
|
|
52 |
if not "vi" in supported_languages:
|
53 |
supported_languages.append("vi")
|
54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
def normalize_vietnamese_text(text):
|
56 |
text = (
|
57 |
TTSnorm(text, unknown=False, lower=False, rule=True)
|
|
|
86 |
language,
|
87 |
audio_file_pth,
|
88 |
normalize_text=True,
|
89 |
+
use_llm=False, # Thêm tùy chọn sử dụng LLM
|
90 |
+
content_type="Theo yêu cầu", # Loại nội dung (ví dụ: "triết lý sống" hoặc "Theo yêu cầu")
|
91 |
):
|
92 |
+
if use_llm:
|
93 |
+
# Nếu sử dụng LLM, tạo nội dung văn bản từ đầu vào
|
94 |
+
print("I: Generating text with LLM...")
|
95 |
+
generated_text = create_content(prompt, content_type, language)
|
96 |
+
print(f"Generated text: {generated_text}")
|
97 |
+
prompt = generated_text # Gán văn bản được tạo bởi LLM vào biến prompt
|
98 |
+
|
99 |
if language not in supported_languages:
|
100 |
metrics_text = gr.Warning(
|
101 |
f"Language you put {language} in is not in our Supported Languages, please choose from dropdown"
|
|
|
130 |
prompt = re.sub("([^\x00-\x7F]|\w)(\.|\。|\?)", r"\1 \2\2", prompt)
|
131 |
if normalize_text and language == "vi":
|
132 |
prompt = normalize_vietnamese_text(prompt)
|
|
|
133 |
print("I: Generating new audio...")
|
134 |
t0 = time.time()
|
135 |
out = MODEL.inference(
|
|
|
156 |
torchaudio.save("output.wav", torch.tensor(out["wav"]).unsqueeze(0), 24000)
|
157 |
except RuntimeError as e:
|
158 |
if "device-side assert" in str(e):
|
159 |
+
# cannot do anything on cuda device side error, need to restart
|
160 |
print(
|
161 |
f"Exit due to: Unrecoverable exception caused by language:{language} prompt:{prompt}",
|
162 |
flush=True,
|
163 |
)
|
164 |
gr.Warning("Unhandled Exception encounter, please retry in a minute")
|
165 |
+
print("Cuda device-assert Runtime encountered need restart")
|
166 |
error_time = datetime.datetime.now().strftime("%d-%m-%Y-%H:%M:%S")
|
167 |
error_data = [
|
168 |
error_time,
|
|
|
177 |
csv.writer(write_io).writerows([error_data])
|
178 |
csv_upload = write_io.getvalue().encode()
|
179 |
filename = error_time + "_" + str(uuid.uuid4()) + ".csv"
|
180 |
+
print("Writing error csv")
|
181 |
error_api = HfApi()
|
182 |
error_api.upload_file(
|
183 |
path_or_fileobj=csv_upload,
|
|
|
185 |
repo_id="coqui/xtts-flagged-dataset",
|
186 |
repo_type="dataset",
|
187 |
)
|
188 |
+
# speaker_wav
|
189 |
print("Writing error reference audio")
|
190 |
speaker_filename = error_time + "_reference_" + str(uuid.uuid4()) + ".wav"
|
191 |
error_api = HfApi()
|
|
|
215 |
return (None, metrics_text)
|
216 |
return ("output.wav", metrics_text)
|
217 |
|
218 |
+
# Cập nhật giao diện Gradio
|
219 |
with gr.Blocks(analytics_enabled=False) as demo:
|
220 |
with gr.Row():
|
221 |
with gr.Column():
|
222 |
gr.Markdown(
|
223 |
"""
|
224 |
+
# tts@TDNM ✨ https:www.tdn-m.com
|
225 |
"""
|
226 |
)
|
227 |
with gr.Column():
|
228 |
+
# placeholder to align the image
|
229 |
pass
|
230 |
|
231 |
with gr.Row():
|
232 |
with gr.Column():
|
233 |
input_text_gr = gr.Textbox(
|
234 |
+
label="Bạn cần nội dung gì?",
|
235 |
+
info="Tôi có thể viết và thu âm luôn cho bạn",
|
236 |
+
value="Lời tự sự của AI, 150 từ",
|
237 |
)
|
238 |
language_gr = gr.Dropdown(
|
239 |
label="Language (Ngôn ngữ)",
|
|
|
265 |
info="Normalize Vietnamese text",
|
266 |
value=True,
|
267 |
)
|
268 |
+
use_llm_checkbox = gr.Checkbox(
|
269 |
+
label="Sử dụng LLM để tạo nội dung",
|
270 |
+
info="Use LLM to generate content",
|
271 |
+
value=True,
|
272 |
+
)
|
273 |
+
content_type_dropdown = gr.Dropdown(
|
274 |
+
label="Loại nội dung",
|
275 |
+
choices=["triết lý sống", "Theo yêu cầu"],
|
276 |
+
value="Theo yêu cầu",
|
277 |
+
)
|
278 |
ref_gr = gr.Audio(
|
279 |
label="Reference Audio (Giọng mẫu)",
|
280 |
type="filepath",
|
281 |
+
value="nam-tai-llieu.wav",
|
282 |
)
|
283 |
tts_button = gr.Button(
|
284 |
"Đọc 🗣️🔥",
|
|
|
298 |
language_gr,
|
299 |
ref_gr,
|
300 |
normalize_text,
|
301 |
+
use_llm_checkbox, # Thêm checkbox để bật/tắt LLM
|
302 |
+
content_type_dropdown, # Thêm dropdown để chọn loại nội dung
|
303 |
],
|
304 |
outputs=[audio_gr, out_text_gr],
|
305 |
api_name="predict",
|