File size: 13,679 Bytes
50060d5
 
e3a2d49
50060d5
717f406
e3a2d49
 
 
 
 
 
50060d5
e3a2d49
 
50060d5
 
 
 
e3a2d49
 
 
50060d5
 
 
 
 
e3a2d49
50060d5
 
 
e3a2d49
50060d5
e3a2d49
50060d5
 
 
 
 
 
 
 
 
 
e3a2d49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6698955
e3a2d49
 
 
 
 
b62226e
e3a2d49
 
 
 
 
 
 
 
 
6698955
e3a2d49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50060d5
e3a2d49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
50060d5
e3a2d49
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e7411a5
e3a2d49
 
 
 
 
 
 
 
 
 
e7411a5
e3a2d49
 
 
e7411a5
 
 
 
 
 
 
e3a2d49
e7411a5
 
 
 
 
 
 
 
 
50060d5
e7411a5
 
 
 
 
 
e3a2d49
50060d5
e3a2d49
 
 
 
 
 
50060d5
e3a2d49
50060d5
e3a2d49
 
50060d5
 
e3a2d49
50060d5
e3a2d49
50060d5
 
 
 
 
 
 
 
 
 
 
 
 
 
e3a2d49
50060d5
 
e7411a5
 
e3a2d49
50060d5
 
 
 
 
 
e3a2d49
 
50060d5
e3a2d49
 
 
 
 
 
 
50060d5
 
e3a2d49
 
50060d5
 
e3a2d49
50060d5
e3a2d49
50060d5
e3a2d49
 
 
 
50060d5
6698955
e3a2d49
 
 
 
 
 
 
 
 
50060d5
 
e3a2d49
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
import gradio as gr
from PIL import Image
from transformers import AutoModelForImageTextToText, AutoProcessor, AutoTokenizer, TextIteratorStreamer
import spaces
from threading import Thread
from pdf2image import convert_from_path
import os
import tempfile
import base64
from io import BytesIO
import time

# --- Model Loading ---
# Load the model, processor, and tokenizer once when the app starts.
model_path = "nanonets/Nanonets-OCR-s"

print("Loading Nanonets OCR model...")
model = AutoModelForImageTextToText.from_pretrained(
    model_path,
    torch_dtype="auto",
    device_map="auto",
    attn_implementation="flash_attention_2"
)
model.eval()

processor = AutoProcessor.from_pretrained(model_path)
tokenizer = AutoTokenizer.from_pretrained(model_path)
print("Model loaded successfully!")


# --- Helper Functions ---
def process_tags(content: str) -> str:
    """Replaces special tags with HTML entities to prevent them from being rendered as HTML."""
    content = content.replace("<img>", "&lt;img&gt;")
    content = content.replace("</img>", "&lt;/img&gt;")
    content = content.replace("<watermark>", "&lt;watermark&gt;")
    content = content.replace("</watermark>", "&lt;/watermark&gt;")
    content = content.replace("<page_number>", "&lt;page_number&gt;")
    content = content.replace("</page_number>", "&lt;/page_number&gt;")
    content = content.replace("<signature>", "&lt;signature&gt;")
    content = content.replace("</signature>", "&lt;/signature&gt;")
    return content

def encode_image(image: Image) -> str:
    """Encodes an image to a base64 string."""
    buffered = BytesIO()
    image.save(buffered, format="JPEG")
    img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
    return img_str

@spaces.GPU
def stream_request(
    messages: list[dict],
    model_name: str,
    max_tokens: int = 8000,
    temperature: float = 0.0,
):
    """
    Stream text generation from the OCR model given messages with images and text.
    
    Args:
        messages: List of message dictionaries with role and content
        model_name: Name of the model (unused but kept for compatibility)
        max_tokens: Maximum number of tokens to generate
        temperature: Temperature for generation (unused, model runs deterministically)
    
    Yields:
        str: Generated text chunks
    """
    # Extract the image and text from messages
    for message in messages:
        if message["role"] == "user":
            content = message["content"]
            image_data = None
            text_prompt = ""
            
            for item in content:
                if item["type"] == "image_url":
                    # Decode base64 image
                    image_url = item["image_url"]["url"]
                    if image_url.startswith("data:image/jpeg;base64,"):
                        image_base64 = image_url.split(",")[1]
                        image_bytes = base64.b64decode(image_base64)
                        image_data = Image.open(BytesIO(image_bytes))
                elif item["type"] == "text":
                    text_prompt = item["text"]
            
            if image_data is not None:
                # Format messages in the expected format for the model
                formatted_messages = [
                    {"role": "system", "content": "You are a helpful assistant."},
                    {"role": "user", "content": [
                        {"type": "image", "image": image_data},
                        {"type": "text", "text": text_prompt},
                    ]},
                ]
                
                # Apply chat template to format the input properly
                text = processor.apply_chat_template(
                    formatted_messages, 
                    tokenize=False, 
                    add_generation_prompt=True
                )
                
                # Process the formatted text and image
                inputs = processor(
                    text=[text], 
                    images=[image_data], 
                    padding=True, 
                    return_tensors="pt"
                )
                
                # Move inputs to the same device as the model
                inputs = {k: v.to(model.device) if hasattr(v, 'to') else v for k, v in inputs.items()}
                
                # Set up streaming
                streamer = TextIteratorStreamer(
                    tokenizer, 
                    timeout=60.0, 
                    skip_prompt=True, 
                    skip_special_tokens=True
                )
                
                generation_kwargs = {
                    **inputs,
                    "streamer": streamer,
                    "max_new_tokens": max_tokens,
                    "do_sample": False,  # Deterministic generation
                    "pad_token_id": tokenizer.eos_token_id,
                }
                
                # Start generation in a separate thread
                thread = Thread(target=model.generate, kwargs=generation_kwargs)
                thread.start()
                
                # Yield generated tokens as they come
                for new_text in streamer:
                    yield new_text
                
                thread.join()
                return
    
    # If no valid image/text pair found, return empty
    yield ""

def convert_to_markdown_stream(
    images: Image, model_name, max_gen_tokens, with_img_desc: bool = False
):
    """
    Generator function that yields streaming markdown conversion results
    Processes images one by one and concatenates results
    """
    images = [images]
    # validate_file_paths(file_paths)
    # file_paths = convert_files_to_images(file_paths)
    # resize_images(file_paths, max_img_size)

    # Create system prompt for PDF to markdown conversion
    if with_img_desc:
        user_prompt = """Extract the text from the above document as if you were reading it naturally. Return the tables in html format. Return the equations in LaTeX representation. If there is an image in the document and image caption is not present, add a small description of the image inside the <img></img> tag; otherwise, add the image caption inside <img></img>. Watermarks should be wrapped in brackets. Ex: <watermark>OFFICIAL COPY</watermark>. Page numbers should be wrapped in brackets. Ex: <page_number>14</page_number> or <page_number>9/22</page_number>. Prefer using ☐ and β˜‘ for check boxes."""
    else:
        user_prompt = """Extract the text from the above document as if you were reading it naturally. Return the tables in html format. Watermarks should be wrapped in brackets. Ex: <watermark>OFFICIAL COPY</watermark>. Page numbers should be wrapped in brackets. Ex: <page_number>14</page_number> or <page_number>9/22</page_number>. Prefer using ☐ and β˜‘ for check boxes."""
    
    # Accumulate results from all pages
    full_markdown_content = ""

    # Process each image individually
    for i, image in enumerate(images):
        # Build messages for this single image
        content = [
            {
                "type": "image_url",
                "image_url": {
                    "url": f"data:image/jpeg;base64,{encode_image(image)}"
                },
            },
            {"type": "text", "text": user_prompt},
        ]

        messages = [{"role": "user", "content": content}]

        # Stream this individual page
        page_content = ""
        try:
            for chunk in stream_request(
                messages=messages,
                model_name=model_name,
                max_tokens=max_gen_tokens,
            ):
                page_content += chunk
                # Yield accumulated content from all pages processed so far + current page
                current_total = (
                    full_markdown_content
                    + f"Page {i + 1} of {len(images)}\n"
                    + page_content
                )
                time.sleep(0.05)
                yield current_total

            # Process the completed page content and add it to the full content
            full_markdown_content += (
                f"Page {i + 1} of {len(images)}\n" + page_content
            )

        except Exception as e:
            return f"Error: {e}"

def process_document(image, max_tokens, with_img_desc: bool = False):
    """
    Process uploaded document (PDF or image) and convert to markdown.
    
    Args:
        file_path: Path to uploaded file
        max_tokens: Maximum tokens per page
    
    Returns:
        Generator yielding markdown content
    """
    if image is None:
        return "Please upload a file first."
    try:
        # Handle PDF files
        # if file_path.name.lower().endswith('.pdf'):
        #     # Convert PDF to images
        #     with tempfile.TemporaryDirectory() as temp_dir:
        #         # Copy uploaded file to temp directory
        #         temp_pdf_path = os.path.join(temp_dir, "document.pdf")
        #         import shutil
        #         shutil.copy(file_path.name, temp_pdf_path)
                
        #         # Convert PDF pages to images
        #         images = convert_from_path(temp_pdf_path, dpi=150)
        #         images = [image.convert("RGB") for image in images]
        #         images = [image.resize((2048, 2048)) for image in images]
        #         # Process each page
        #         for result in convert_to_markdown_stream(
        #             images, "nanonets/Nanonets-OCR-s", max_tokens, with_img_desc
        #         ):
        #             yield process_tags(result)
        
        # # Handle image files
        # else:
        #     # Open image directly
            # image = Image.open(file_path.name).convert("RGB")
            # image = image.resize((2048, 2048))
            image = Image.fromarray(image)
            image = image.resize((2048, 2048))
            
            # Process single image
            for result in convert_to_markdown_stream(
                image, "nanonets/Nanonets-OCR-s", max_tokens, with_img_desc
            ):
                yield process_tags(result)
                    
    except Exception as e:
        yield f"Error processing document: {str(e)}"

# --- Gradio Interface ---
with gr.Blocks(title="PDF to Markdown Converter", theme=gr.themes.Soft()) as demo:
    gr.HTML("""
    <div class="title" style="text-align: center">
        <h1>πŸ“„ Nanonets-OCR-s: PDF & Image to Markdown Converter</h1>
        <p style="font-size: 1.1em; color: #6b7280; margin-bottom: 0.6em;">
            Powered by <strong>Nanonets-OCR-s</strong>, A model for transforming documents into structured markdown with intelligent content recognition and semantic tagging.
        </p>
        <div style="display: flex; justify-content: center; gap: 20px; margin: 15px 0;">
            <a href="https://huggingface.co/nanonets/Nanonets-OCR-s" target="_blank" style="text-decoration: none; color: #2563eb; font-weight: 500;">
                πŸ“š Hugging Face Model
            </a>
            <a href="https://nanonets.com/research/nanonets-ocr-s/" target="_blank" style="text-decoration: none; color: #2563eb; font-weight: 500;">
                πŸ“ Release Blog
            </a>
            <a href="https://github.com/NanoNets/docext" target="_blank" style="text-decoration: none; color: #2563eb; font-weight: 500;">
                πŸ’» GitHub Repository
            </a>
        </div>
    </div>
    """)

    with gr.Row():
        with gr.Column(scale=1):
            file_input = gr.Image(
                label="Upload Image Document",
                height=200
            )
            max_tokens_slider = gr.Slider(
                minimum=1024,
                maximum=8192,
                value=4096,
                step=512,
                label="Max Tokens per Page",
                info="Maximum number of new tokens to generate for each page."
            )
            with_img_desc_checkbox = gr.Checkbox(
                label="Include Image Description",
                value=False,
                info="If enabled, the model will include a description of the image in the output. If no image is present, use with_img_desc=False."
            )
            extract_btn = gr.Button("Convert to Markdown", variant="primary", size="lg")

        with gr.Column(scale=2):
            output_text = gr.Markdown(
                label="Formatted Model Prediction",
                latex_delimiters=[{"left": "$$", "right": "$$", "display": True}, {"left": "$", "right": "$", "display": False}],
                line_breaks=True,
                show_copy_button=True,
                height=600,
            )

    extract_btn.click(
        fn=process_document,
        inputs=[file_input, max_tokens_slider, with_img_desc_checkbox],
        concurrency_limit=4,
        outputs=output_text
    )

    with gr.Accordion("About the Model (Nanonets-OCR-s)", open=False):
        gr.Markdown("""
        ### Key Features
        - **LaTeX Equation Recognition**: Converts mathematical equations into properly formatted LaTeX.
        - **Intelligent Image Description**: Describes images within documents using structured `<img>` tags.
        - **Signature & Watermark Detection**: Identifies and isolates signatures and watermarks within `<signature>` and `<watermark>` tags.
        - **Smart Checkbox Handling**: Converts form checkboxes into standardized Unicode symbols (☐, β˜‘).
        - **Complex Table Extraction**: Accurately converts tables into HTML format.
        """)

if __name__ == "__main__":
    demo.queue().launch(debug=True)