Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,8 +1,9 @@
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image
|
3 |
-
from transformers import AutoTokenizer, AutoProcessor, AutoModelForImageTextToText
|
4 |
import torch
|
5 |
import spaces
|
|
|
6 |
|
7 |
model_path = "nanonets/Nanonets-OCR-s"
|
8 |
|
@@ -33,6 +34,65 @@ def process_tags(content: str) -> str:
|
|
33 |
|
34 |
return content
|
35 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
@spaces.GPU()
|
37 |
def ocr_image_gradio(image, max_tokens=4096):
|
38 |
"""Process image through Nanonets OCR model for Gradio interface"""
|
@@ -88,6 +148,9 @@ with gr.Blocks(title="Nanonets OCR Demo") as demo:
|
|
88 |
π» GitHub Repository
|
89 |
</a>
|
90 |
</div>
|
|
|
|
|
|
|
91 |
</div>
|
92 |
""")
|
93 |
|
@@ -108,9 +171,16 @@ with gr.Blocks(title="Nanonets OCR Demo") as demo:
|
|
108 |
)
|
109 |
extract_btn = gr.Button("Extract Text", variant="primary", size="lg")
|
110 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
with gr.Column(scale=2):
|
112 |
output_text = gr.Markdown(
|
113 |
-
label="
|
114 |
latex_delimiters=[
|
115 |
{"left": "$$", "right": "$$", "display": True},
|
116 |
{"left": "$", "right": "$", "display": False},
|
@@ -124,16 +194,16 @@ with gr.Blocks(title="Nanonets OCR Demo") as demo:
|
|
124 |
show_copy_button=True,
|
125 |
)
|
126 |
|
127 |
-
# Event handlers
|
128 |
extract_btn.click(
|
129 |
-
fn=
|
130 |
inputs=[image_input, max_tokens_slider],
|
131 |
outputs=output_text,
|
132 |
show_progress=True
|
133 |
)
|
134 |
|
135 |
image_input.change(
|
136 |
-
fn=
|
137 |
inputs=[image_input, max_tokens_slider],
|
138 |
outputs=output_text,
|
139 |
show_progress=True
|
@@ -142,32 +212,42 @@ with gr.Blocks(title="Nanonets OCR Demo") as demo:
|
|
142 |
# Add model information section
|
143 |
with gr.Accordion("About Nanonets-OCR-s", open=False):
|
144 |
gr.Markdown("""
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
|
172 |
if __name__ == "__main__":
|
173 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from PIL import Image
|
3 |
+
from transformers import AutoTokenizer, AutoProcessor, AutoModelForImageTextToText, TextIteratorStreamer
|
4 |
import torch
|
5 |
import spaces
|
6 |
+
import threading
|
7 |
|
8 |
model_path = "nanonets/Nanonets-OCR-s"
|
9 |
|
|
|
34 |
|
35 |
return content
|
36 |
|
37 |
+
@spaces.GPU()
|
38 |
+
def ocr_image_gradio_stream(image, max_tokens=4096):
|
39 |
+
"""Process image through Nanonets OCR model with streaming output"""
|
40 |
+
if image is None:
|
41 |
+
yield "Please upload an image."
|
42 |
+
return
|
43 |
+
|
44 |
+
try:
|
45 |
+
prompt = """Extract the text from the above document as if you were reading it naturally. Return the tables in html format. Watermarks should be wrapped in brackets. Ex: <watermark>OFFICIAL COPY</watermark>. Page numbers should be wrapped in brackets. Ex: <page_number>14</page_number> or <page_number>9/22</page_number>. Prefer using β and β for check boxes."""
|
46 |
+
|
47 |
+
# Convert PIL image if needed
|
48 |
+
if not isinstance(image, Image.Image):
|
49 |
+
image = Image.fromarray(image)
|
50 |
+
|
51 |
+
messages = [
|
52 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
53 |
+
{"role": "user", "content": [
|
54 |
+
{"type": "image", "image": image},
|
55 |
+
{"type": "text", "text": prompt},
|
56 |
+
]},
|
57 |
+
]
|
58 |
+
|
59 |
+
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
60 |
+
inputs = processor(text=[text], images=[image], padding=True, return_tensors="pt")
|
61 |
+
inputs = inputs.to(model.device)
|
62 |
+
|
63 |
+
# Set up streaming
|
64 |
+
streamer = TextIteratorStreamer(
|
65 |
+
tokenizer=tokenizer,
|
66 |
+
skip_prompt=True,
|
67 |
+
skip_special_tokens=True,
|
68 |
+
clean_up_tokenization_spaces=True
|
69 |
+
)
|
70 |
+
|
71 |
+
generation_kwargs = {
|
72 |
+
**inputs,
|
73 |
+
"max_new_tokens": max_tokens,
|
74 |
+
"do_sample": False,
|
75 |
+
"streamer": streamer,
|
76 |
+
}
|
77 |
+
|
78 |
+
# Start generation in a separate thread
|
79 |
+
generation_thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
|
80 |
+
generation_thread.start()
|
81 |
+
|
82 |
+
# Stream the output
|
83 |
+
partial_output = ""
|
84 |
+
for new_token in streamer:
|
85 |
+
partial_output += new_token
|
86 |
+
processed_output = process_tags(partial_output)
|
87 |
+
yield processed_output
|
88 |
+
|
89 |
+
# Ensure thread completes
|
90 |
+
generation_thread.join()
|
91 |
+
|
92 |
+
except Exception as e:
|
93 |
+
yield f"Error processing image: {str(e)}"
|
94 |
+
|
95 |
+
# Non-streaming version as fallback
|
96 |
@spaces.GPU()
|
97 |
def ocr_image_gradio(image, max_tokens=4096):
|
98 |
"""Process image through Nanonets OCR model for Gradio interface"""
|
|
|
148 |
π» GitHub Repository
|
149 |
</a>
|
150 |
</div>
|
151 |
+
<p style="font-size: 0.9em; color: #10b981; font-weight: 500;">
|
152 |
+
β¨ Now with streaming output and support for 4 concurrent uploads!
|
153 |
+
</p>
|
154 |
</div>
|
155 |
""")
|
156 |
|
|
|
171 |
)
|
172 |
extract_btn = gr.Button("Extract Text", variant="primary", size="lg")
|
173 |
|
174 |
+
gr.Markdown("""
|
175 |
+
**π‘ Tips:**
|
176 |
+
- Upload supports concurrent processing of up to 4 images
|
177 |
+
- Results stream in real-time as they're generated
|
178 |
+
- Automatic processing starts when you upload an image
|
179 |
+
""")
|
180 |
+
|
181 |
with gr.Column(scale=2):
|
182 |
output_text = gr.Markdown(
|
183 |
+
label="Streaming model prediction",
|
184 |
latex_delimiters=[
|
185 |
{"left": "$$", "right": "$$", "display": True},
|
186 |
{"left": "$", "right": "$", "display": False},
|
|
|
194 |
show_copy_button=True,
|
195 |
)
|
196 |
|
197 |
+
# Event handlers with streaming
|
198 |
extract_btn.click(
|
199 |
+
fn=ocr_image_gradio_stream,
|
200 |
inputs=[image_input, max_tokens_slider],
|
201 |
outputs=output_text,
|
202 |
show_progress=True
|
203 |
)
|
204 |
|
205 |
image_input.change(
|
206 |
+
fn=ocr_image_gradio_stream,
|
207 |
inputs=[image_input, max_tokens_slider],
|
208 |
outputs=output_text,
|
209 |
show_progress=True
|
|
|
212 |
# Add model information section
|
213 |
with gr.Accordion("About Nanonets-OCR-s", open=False):
|
214 |
gr.Markdown("""
|
215 |
+
## Nanonets-OCR-s
|
216 |
+
|
217 |
+
Nanonets-OCR-s is a powerful, state-of-the-art image-to-markdown OCR model that goes far beyond traditional text extraction.
|
218 |
+
It transforms documents into structured markdown with intelligent content recognition and semantic tagging, making it ideal
|
219 |
+
for downstream processing by Large Language Models (LLMs).
|
220 |
+
|
221 |
+
### Key Features
|
222 |
+
|
223 |
+
- **LaTeX Equation Recognition**: Automatically converts mathematical equations and formulas into properly formatted LaTeX syntax.
|
224 |
+
It distinguishes between inline `($...$)` and display `($$...$$)` equations.
|
225 |
+
|
226 |
+
- **Intelligent Image Description**: Describes images within documents using structured `<img>` tags, making them digestible
|
227 |
+
for LLM processing. It can describe various image types, including logos, charts, graphs and so on, detailing their content,
|
228 |
+
style, and context.
|
229 |
+
|
230 |
+
- **Signature Detection & Isolation**: Identifies and isolates signatures from other text, outputting them within a `<signature>` tag.
|
231 |
+
This is crucial for processing legal and business documents.
|
232 |
+
|
233 |
+
- **Watermark Extraction**: Detects and extracts watermark text from documents, placing it within a `<watermark>` tag.
|
234 |
+
|
235 |
+
- **Smart Checkbox Handling**: Converts form checkboxes and radio buttons into standardized Unicode symbols (β, β, β)
|
236 |
+
for consistent and reliable processing.
|
237 |
+
|
238 |
+
- **Complex Table Extraction**: Accurately extracts complex tables from documents and converts them into both markdown
|
239 |
+
and HTML table formats.
|
240 |
+
""")
|
241 |
|
242 |
if __name__ == "__main__":
|
243 |
+
# Configure for concurrent processing with streaming support
|
244 |
+
demo.queue(
|
245 |
+
max_size=20, # Maximum queue size
|
246 |
+
concurrency_count=4, # Allow 4 concurrent requests
|
247 |
+
status_update_rate=0.1, # Update status every 100ms for better streaming experience
|
248 |
+
).launch(
|
249 |
+
server_name="0.0.0.0",
|
250 |
+
server_port=7860,
|
251 |
+
show_error=True,
|
252 |
+
share=False
|
253 |
+
)
|