File size: 9,472 Bytes
10e9b7d
 
eccf8e4
7d65c66
3c4371f
e58a39e
6c6314d
e58a39e
 
29cc29a
3db6293
e80aab9
e58a39e
 
7b5c62c
e58a39e
 
cda73b0
 
 
 
 
 
 
 
 
 
7b5c62c
e58a39e
 
 
31243f4
e70c32c
cda73b0
fbdcc5d
22b9cf1
508d08f
e58a39e
31243f4
e58a39e
 
 
 
36ed51a
3c4371f
e58a39e
eccf8e4
31243f4
7d65c66
f20a12d
 
39f35f9
 
f20a12d
 
31243f4
e58a39e
 
7d65c66
e58a39e
 
e80aab9
7d65c66
 
e58a39e
 
31243f4
 
 
 
 
e58a39e
 
 
 
31243f4
d1aeb28
1d0b9ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e58a39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31243f4
e58a39e
 
 
 
 
 
 
 
31243f4
 
e58a39e
 
31243f4
e58a39e
 
7d65c66
e80aab9
7d65c66
e80aab9
 
31243f4
e80aab9
 
3c4371f
 
 
e80aab9
31243f4
e58a39e
7d65c66
e58a39e
31243f4
e58a39e
e80aab9
 
31243f4
e58a39e
 
 
 
 
 
 
 
 
e80aab9
7e4a06b
e80aab9
31243f4
9088b99
7d65c66
e58a39e
e80aab9
e58a39e
e80aab9
 
3c4371f
 
e58a39e
7d65c66
3c4371f
e58a39e
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import asyncio
from smolagents import ToolCallingAgent, InferenceClientModel
from smolagents import DuckDuckGoSearchTool, Tool, CodeAgent
from huggingface_hub import login
#hi
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"

login(token=os.environ["HUGGINGFACEHUB_API_TOKEN"])

## TOOL 1
search_tool = DuckDuckGoSearchTool()

## TOOL 2
class WikipediaTool(Tool):
    name = "wikipedia_search"
    description = "Search Wikipedia and extract summaries"
    inputs = {"query": "string"}
    output_type = "string"
    
    def forward(self, query):
        return some_wikipedia_search_logic(query)
wiki_tool = WikipediaTool()

async def run_and_submit_all(profile: gr.OAuthProfile | None):
    log_output = ""

    try:
        agent = ToolCallingAgent(
            tools=[search_tool, wiki_tool],
            model=InferenceClientModel(model="deepseek-ai/DeepSeek-V3", provider="together"),
            max_steps=15,
            verbosity_level=0,
        )
    except Exception as e:
        yield f"Error initializing agent: {e}", None, log_output
        return

    space_id = os.getenv("SPACE_ID")
    agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"

    questions_url = f"{DEFAULT_API_URL}/questions"
    try:
        response = requests.get(questions_url, timeout=15)
        response.raise_for_status()
        questions_data = response.json()

        #selected_indices = [0,2,3,4,5,8,9,10,11,14,15,16,18]  # 2nd, 5th, 6th, and 8th questions
        #questions_data = [questions_data[i] for i in selected_indices if i < len(questions_data)]

        
        if not questions_data:
            yield "Fetched questions list is empty or invalid format.", None, log_output
            return
    except Exception as e:
        yield f"Error fetching questions: {e}", None, log_output
        return

    results_log = []
    answers_payload = []
    loop = asyncio.get_event_loop()

    for item in questions_data:
        task_id = item.get("task_id")
        question_text = item.get("question")
        if not task_id or question_text is None:
            continue

        log_output += f"πŸ” Solving Task ID: {task_id}...\n"
        yield None, None, log_output

        try:
            system_prompt = (
                "You are a general AI assistant. I will ask you a question. "
                "Report your thoughts, and finish your answer with the following template: "
                "FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. "
                "If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. "
                "If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. "
                "If the answer is that no such event or person exists, respond with the single word 'none' or 'no one' as appropriate. Avoid long explanations."
                "ALWAYS answer with the least amount of words (single word wherever possible). If the answer is 'right', say 'right, and not 'the answer is right'"
                "Only respond with your final answer using the format: FINAL ANSWER: [your answer]. Do not include reasoning, context, explanations, markdown, or additional sections."   
                "Do not provide short answers and detailed answers seperately. You ONLY have to answer with the shortest answer possible. We DO NOT need explanations. Also dont use 'task outcome:'"
                "You are a precise and concise AI assistant competing in a strict evaluation benchmark."
                "You are a precise and concise AI assistant competing in a strict evaluation benchmark.  You will be asked a question. You must only output a single final answer, using the following format exactly: FINAL ANSWER: [your answer]"
                "Guidelines: Do NOT explain your reasoning. Do NOT output markdown, sections, titles, bullet points, or formatting like (Task outcome), (Detailed version), or (Additional context). Do NOT include references, sources, or citations. Do NOT include any leading text like (Here is the final answer), (The correct answer is), or (Answer):.  Do NOT repeat the question or summarize it."
                "Your response must consist of a single line starting with: FINAL ANSWER: and nothing else."
                "Normalization rules: If the answer is a list, apply the above rules to each item, and separate them with commas. If the answer is a number, write it as digits (no commas, no units unless asked). If the answer is a string, use lowercase, no articles (a, an, the), and no abbreviations."
                "If there is no correct answer (e.g., no such person, place, or event), respond with: FINAL ANSWER: none"
                "If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.\n\n"
            )
            full_prompt = system_prompt + f"Question: {question_text.strip()}"

            agent_result = await loop.run_in_executor(None, agent, full_prompt)

            # Extract final answer cleanly
            if isinstance(agent_result, dict) and "final_answer" in agent_result:
                final_answer = str(agent_result["final_answer"]).strip()
            elif isinstance(agent_result, str):
                response_text = agent_result.strip()

                # Remove known boilerplate
                if "Here is the final answer from your managed agent" in response_text:
                    response_text = response_text.split(":", 1)[-1].strip()

                if "FINAL ANSWER:" in response_text:
                    _, final_answer = response_text.rsplit("FINAL ANSWER:", 1)
                    final_answer = final_answer.strip()
                else:
                    final_answer = response_text
            else:
                final_answer = str(agent_result).strip()

            answers_payload.append({
                "task_id": task_id,
                "submitted_answer": final_answer
            })

            results_log.append({
                "Task ID": task_id,
                "Question": question_text,
                "Submitted Answer": final_answer
            })

            log_output += f"βœ… Done: {task_id} β€” Answer: {final_answer[:60]}\n"
            yield None, None, log_output

        except Exception as e:
            print(f"Error running agent on task {task_id}: {e}")
            results_log.append({
                "Task ID": task_id,
                "Question": question_text,
                "Submitted Answer": f"AGENT ERROR: {e}"
            })
            log_output += f"⛔️ Error: {task_id} β€” {e}\n"
            yield None, None, log_output

    if not answers_payload:
        yield "Agent did not produce any answers to submit.", pd.DataFrame(results_log), log_output
        return

    username = profile.username if profile else "unknown"
    submit_url = f"{DEFAULT_API_URL}/submit"
    submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
    try:
        response = requests.post(submit_url, json=submission_data, timeout=60)
        response.raise_for_status()
        result_data = response.json()
        final_status = (
            f"Submission Successful!\n"
            f"User: {result_data.get('username')}\n"
            f"Overall Score: {result_data.get('score', 'N/A')}% "
            f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
            f"Message: {result_data.get('message', 'No message received.')}"
        )
        results_df = pd.DataFrame(results_log)
        yield final_status, results_df, log_output
    except Exception as e:
        status_message = f"Submission Failed: {e}"
        results_df = pd.DataFrame(results_log)
        yield status_message, results_df, log_output

with gr.Blocks() as demo:
    gr.Markdown("# Basic Agent Evaluation Runner")
    gr.Markdown("""
    **Instructions:**
    1. Clone this space and define your agent logic.
    2. Log in to your Hugging Face account.
    3. Click 'Run Evaluation & Submit All Answers'.
    ---
    **Note:**
    The run may take time. Async is now used to improve responsiveness.
    """)

    gr.LoginButton()

    run_button = gr.Button("Run Evaluation & Submit All Answers")
    status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
    results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
    progress_log = gr.Textbox(label="Progress Log", lines=10, interactive=False)

    run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table, progress_log])

if __name__ == "__main__":
    print("\n" + "-"*30 + " App Starting " + "-"*30)
    space_host_startup = os.getenv("SPACE_HOST")
    space_id_startup = os.getenv("SPACE_ID")

    if space_host_startup:
        print(f"βœ… SPACE_HOST: https://{space_host_startup}.hf.space")
    if space_id_startup:
        print(f"βœ… SPACE_ID: https://huggingface.co/spaces/{space_id_startup}")

    print("Launching Gradio Interface...")
    demo.launch(debug=True, share=False)