File size: 9,472 Bytes
10e9b7d eccf8e4 7d65c66 3c4371f e58a39e 6c6314d e58a39e 29cc29a 3db6293 e80aab9 e58a39e 7b5c62c e58a39e cda73b0 7b5c62c e58a39e 31243f4 e70c32c cda73b0 fbdcc5d 22b9cf1 508d08f e58a39e 31243f4 e58a39e 36ed51a 3c4371f e58a39e eccf8e4 31243f4 7d65c66 f20a12d 39f35f9 f20a12d 31243f4 e58a39e 7d65c66 e58a39e e80aab9 7d65c66 e58a39e 31243f4 e58a39e 31243f4 d1aeb28 1d0b9ad e58a39e 31243f4 e58a39e 31243f4 e58a39e 31243f4 e58a39e 7d65c66 e80aab9 7d65c66 e80aab9 31243f4 e80aab9 3c4371f e80aab9 31243f4 e58a39e 7d65c66 e58a39e 31243f4 e58a39e e80aab9 31243f4 e58a39e e80aab9 7e4a06b e80aab9 31243f4 9088b99 7d65c66 e58a39e e80aab9 e58a39e e80aab9 3c4371f e58a39e 7d65c66 3c4371f e58a39e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import os
import gradio as gr
import requests
import inspect
import pandas as pd
import asyncio
from smolagents import ToolCallingAgent, InferenceClientModel
from smolagents import DuckDuckGoSearchTool, Tool, CodeAgent
from huggingface_hub import login
#hi
DEFAULT_API_URL = "https://agents-course-unit4-scoring.hf.space"
login(token=os.environ["HUGGINGFACEHUB_API_TOKEN"])
## TOOL 1
search_tool = DuckDuckGoSearchTool()
## TOOL 2
class WikipediaTool(Tool):
name = "wikipedia_search"
description = "Search Wikipedia and extract summaries"
inputs = {"query": "string"}
output_type = "string"
def forward(self, query):
return some_wikipedia_search_logic(query)
wiki_tool = WikipediaTool()
async def run_and_submit_all(profile: gr.OAuthProfile | None):
log_output = ""
try:
agent = ToolCallingAgent(
tools=[search_tool, wiki_tool],
model=InferenceClientModel(model="deepseek-ai/DeepSeek-V3", provider="together"),
max_steps=15,
verbosity_level=0,
)
except Exception as e:
yield f"Error initializing agent: {e}", None, log_output
return
space_id = os.getenv("SPACE_ID")
agent_code = f"https://huggingface.co/spaces/{space_id}/tree/main"
questions_url = f"{DEFAULT_API_URL}/questions"
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
#selected_indices = [0,2,3,4,5,8,9,10,11,14,15,16,18] # 2nd, 5th, 6th, and 8th questions
#questions_data = [questions_data[i] for i in selected_indices if i < len(questions_data)]
if not questions_data:
yield "Fetched questions list is empty or invalid format.", None, log_output
return
except Exception as e:
yield f"Error fetching questions: {e}", None, log_output
return
results_log = []
answers_payload = []
loop = asyncio.get_event_loop()
for item in questions_data:
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
continue
log_output += f"π Solving Task ID: {task_id}...\n"
yield None, None, log_output
try:
system_prompt = (
"You are a general AI assistant. I will ask you a question. "
"Report your thoughts, and finish your answer with the following template: "
"FINAL ANSWER: [YOUR FINAL ANSWER]. YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. "
"If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. "
"If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. "
"If the answer is that no such event or person exists, respond with the single word 'none' or 'no one' as appropriate. Avoid long explanations."
"ALWAYS answer with the least amount of words (single word wherever possible). If the answer is 'right', say 'right, and not 'the answer is right'"
"Only respond with your final answer using the format: FINAL ANSWER: [your answer]. Do not include reasoning, context, explanations, markdown, or additional sections."
"Do not provide short answers and detailed answers seperately. You ONLY have to answer with the shortest answer possible. We DO NOT need explanations. Also dont use 'task outcome:'"
"You are a precise and concise AI assistant competing in a strict evaluation benchmark."
"You are a precise and concise AI assistant competing in a strict evaluation benchmark. You will be asked a question. You must only output a single final answer, using the following format exactly: FINAL ANSWER: [your answer]"
"Guidelines: Do NOT explain your reasoning. Do NOT output markdown, sections, titles, bullet points, or formatting like (Task outcome), (Detailed version), or (Additional context). Do NOT include references, sources, or citations. Do NOT include any leading text like (Here is the final answer), (The correct answer is), or (Answer):. Do NOT repeat the question or summarize it."
"Your response must consist of a single line starting with: FINAL ANSWER: and nothing else."
"Normalization rules: If the answer is a list, apply the above rules to each item, and separate them with commas. If the answer is a number, write it as digits (no commas, no units unless asked). If the answer is a string, use lowercase, no articles (a, an, the), and no abbreviations."
"If there is no correct answer (e.g., no such person, place, or event), respond with: FINAL ANSWER: none"
"If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string.\n\n"
)
full_prompt = system_prompt + f"Question: {question_text.strip()}"
agent_result = await loop.run_in_executor(None, agent, full_prompt)
# Extract final answer cleanly
if isinstance(agent_result, dict) and "final_answer" in agent_result:
final_answer = str(agent_result["final_answer"]).strip()
elif isinstance(agent_result, str):
response_text = agent_result.strip()
# Remove known boilerplate
if "Here is the final answer from your managed agent" in response_text:
response_text = response_text.split(":", 1)[-1].strip()
if "FINAL ANSWER:" in response_text:
_, final_answer = response_text.rsplit("FINAL ANSWER:", 1)
final_answer = final_answer.strip()
else:
final_answer = response_text
else:
final_answer = str(agent_result).strip()
answers_payload.append({
"task_id": task_id,
"submitted_answer": final_answer
})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": final_answer
})
log_output += f"β
Done: {task_id} β Answer: {final_answer[:60]}\n"
yield None, None, log_output
except Exception as e:
print(f"Error running agent on task {task_id}: {e}")
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"AGENT ERROR: {e}"
})
log_output += f"βοΈ Error: {task_id} β {e}\n"
yield None, None, log_output
if not answers_payload:
yield "Agent did not produce any answers to submit.", pd.DataFrame(results_log), log_output
return
username = profile.username if profile else "unknown"
submit_url = f"{DEFAULT_API_URL}/submit"
submission_data = {"username": username.strip(), "agent_code": agent_code, "answers": answers_payload}
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
results_df = pd.DataFrame(results_log)
yield final_status, results_df, log_output
except Exception as e:
status_message = f"Submission Failed: {e}"
results_df = pd.DataFrame(results_log)
yield status_message, results_df, log_output
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown("""
**Instructions:**
1. Clone this space and define your agent logic.
2. Log in to your Hugging Face account.
3. Click 'Run Evaluation & Submit All Answers'.
---
**Note:**
The run may take time. Async is now used to improve responsiveness.
""")
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
progress_log = gr.Textbox(label="Progress Log", lines=10, interactive=False)
run_button.click(fn=run_and_submit_all, outputs=[status_output, results_table, progress_log])
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID")
if space_host_startup:
print(f"β
SPACE_HOST: https://{space_host_startup}.hf.space")
if space_id_startup:
print(f"β
SPACE_ID: https://huggingface.co/spaces/{space_id_startup}")
print("Launching Gradio Interface...")
demo.launch(debug=True, share=False)
|