Orify-text-api / app.py
Sleepyriizi's picture
Add application file
db897db
raw
history blame
7.88 kB
"""Orify Text Detector API – FastAPI + JWT (CPU-only, HF Zero-GPU)
Endpoints
---------
POST /token → returns JWT (OAuth2 password-grant, demo-auth)
POST /analyse → protected; returns verdict JSON + HTML highlights
"""
from __future__ import annotations
import os, re, html
from datetime import datetime, timedelta
from typing import List
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from huggingface_hub import hf_hub_download
from fastapi import FastAPI, HTTPException, Depends
from fastapi.security import OAuth2PasswordBearer, OAuth2PasswordRequestForm
from fastapi.middleware.cors import CORSMiddleware
from jose import JWTError, jwt
from pydantic import BaseModel, Field
# ─── torch.compile shim (HF CPU runtime) ───────────────────────────────
if hasattr(torch, "compile"):
torch.compile = (lambda m=None,*a,**kw: m if callable(m) else (lambda f: f)) # type: ignore
os.environ["TORCHINDUCTOR_DISABLED"] = "1"
# ─── model / weight config ─────────────────────────────────────────────
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
WEIGHT_REPO = "Sleepyriizi/Orify-Text-Detection-Weights"
FILE_MAP = {"ensamble_1":"ensamble_1",
"ensamble_2.bin":"ensamble_2.bin",
"ensamble_3":"ensamble_3"}
BASE_MODEL = "answerdotai/ModernBERT-base"
NUM_LABELS = 41
LABELS = {i:n for i,n in enumerate([
"13B","30B","65B","7B","GLM130B","bloom_7b","bloomz","cohere","davinci",
"dolly","dolly-v2-12b","flan_t5_base","flan_t5_large","flan_t5_small",
"flan_t5_xl","flan_t5_xxl","gemma-7b-it","gemma2-9b-it","gpt-3.5-turbo",
"gpt-35","gpt-4","gpt-4o","gpt-j","gpt-neox","human","llama3-70b",
"llama3-8b","mixtral-8x7b","opt-1.3b","opt-125m","opt-13b","opt-2.7b",
"opt-30b","opt-350m","opt-6.7b","opt-iml-30b","opt-iml-max-1.3b",
"t0-11b","t0-3b","text-davinci-002","text-davinci-003"
])}
# ─── JWT helpers ───────────────────────────────────────────────────────
SECRET_KEY = os.getenv("SECRET_KEY")
if not SECRET_KEY:
raise RuntimeError("Set the SECRET_KEY env-var in Space ➜ Settings ➜ Secrets")
ALGORITHM = "HS256"
ACCESS_TOKEN_EXPIRE_HOURS = 24
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
def _create_token(data: dict, exp_hours: int = ACCESS_TOKEN_EXPIRE_HOURS) -> str:
to_encode = data.copy()
to_encode["exp"] = datetime.utcnow() + timedelta(hours=exp_hours)
return jwt.encode(to_encode, SECRET_KEY, algorithm=ALGORITHM)
async def _current_user(token: str = Depends(oauth2_scheme)):
try:
payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM])
return payload.get("sub") or "anonymous"
except JWTError:
raise HTTPException(401, "Invalid or expired token")
# ─── load ensemble once ────────────────────────────────────────────────
print("🔄 Downloading weights …", flush=True)
local_paths = {k:hf_hub_download(WEIGHT_REPO,f,resume_download=True)
for k,f in FILE_MAP.items()}
print("🧩 Initialising models …", flush=True)
_tok = AutoTokenizer.from_pretrained(BASE_MODEL)
_models: List[AutoModelForSequenceClassification] = []
for p in local_paths.values():
m = AutoModelForSequenceClassification.from_pretrained(BASE_MODEL,
num_labels=NUM_LABELS)
m.load_state_dict(torch.load(p, map_location=DEVICE))
m.to(DEVICE).eval()
_models.append(m)
print("✅ Ensemble ready")
# ─── tiny helpers ──────────────────────────────────────────────────────
def _tidy(text: str) -> str:
text = text.replace("\r\n", "\n").replace("\r", "\n")
text = re.sub(r"\n\s*\n+", "\n\n", text)
text = re.sub(r"[ \t]+", " ", text)
text = re.sub(r"(\w+)-\n(\w+)", r"\1\2", text)
text = re.sub(r"(?<!\n)\n(?!\n)", " ", text)
return text.strip()
def _infer(seg: str):
inp = _tok(seg, return_tensors="pt", truncation=True, padding=True).to(DEVICE)
with torch.no_grad():
probs = torch.stack([torch.softmax(m(**inp).logits, dim=1) for m in _models]).mean(0)[0]
ai_probs = probs.clone(); ai_probs[24] = 0 # drop explicit “human” label
ai = ai_probs.sum().item()*100
human = 100 - ai
top3 = [LABELS[i] for i in torch.topk(ai_probs, 3).indices.tolist()]
return human, ai, top3
# ─── Pydantic schemas ─────────────────────────────────────────────────
from pydantic import BaseModel, Field
class Token(BaseModel):
access_token: str
token_type: str = "bearer"
class AnalyseIn(BaseModel):
text: str = Field(..., min_length=1)
class Line(BaseModel):
text: str; ai: float; human: float; top3: List[str]; reason: str
class AnalyseOut(BaseModel):
verdict: str; confidence: float; ai_avg: float; human_avg: float
per_line: List[Line]; highlight_html: str
# ─── FastAPI app ───────────────────────────────────────────────────────
app = FastAPI(title="Orify Text Detector API", version="1.0.0")
app.add_middleware(CORSMiddleware,
allow_origins=["*"], allow_methods=["*"], allow_headers=["*"])
@app.post("/token", response_model=Token, summary="Obtain JWT (demo accepts any creds)")
async def login(form: OAuth2PasswordRequestForm = Depends()):
return Token(access_token=_create_token({"sub": form.username}))
@app.post("/analyse", response_model=AnalyseOut, summary="Detect AI-generated text")
async def analyse(data: AnalyseIn, _user=Depends(_current_user)):
lines = _tidy(data.text).split("\n")
html_parts, per_line = [], []
h_sum = ai_sum = n = 0.0
for ln in lines:
if not ln.strip():
html_parts.append("<br>")
continue
n += 1
human, ai, top3 = _infer(ln)
h_sum += human; ai_sum += ai
cls = "ai-line" if ai > human else "human-line"
tip = f"AI {ai:.2f}% – Top-3: {', '.join(top3)}" if ai > human else f"Human {human:.2f}%"
html_parts.append(f"<span class='{cls} prob-tooltip' title='{tip}'>{html.escape(ln)}</span>")
reason = (f"High AI likelihood ({ai:.1f}%) – fingerprint ≈ {top3[0]}"
if ai > human else f"Lexical variety suggests human ({human:.1f}%)")
per_line.append(Line(text=ln, ai=ai, human=human, top3=top3, reason=reason))
human_avg = h_sum / n if n else 0
ai_avg = ai_sum / n if n else 0
verdict = "AI-generated" if ai_avg > human_avg else "Human-written"
confidence = max(human_avg, ai_avg)
badge = (f"<span class='ai-line' style='padding:6px 10px;font-weight:bold'>AI-generated {ai_avg:.2f}%</span>"
if verdict == "AI-generated" else
f"<span class='human-line' style='padding:6px 10px;font-weight:bold'>Human-written {human_avg:.2f}%</span>")
highlight_html = f"<h3>{badge}</h3><hr>" + "<br>".join(html_parts)
return AnalyseOut(verdict=verdict, confidence=confidence,
ai_avg=ai_avg, human_avg=human_avg,
per_line=per_line, highlight_html=highlight_html)
# ────── local dev: uvicorn app:app --reload ───────────────────────────