Spaces:
Sleeping
Sleeping
File size: 7,881 Bytes
db897db |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
"""Orify Text Detector API – FastAPI + JWT (CPU-only, HF Zero-GPU)
Endpoints
---------
POST /token → returns JWT (OAuth2 password-grant, demo-auth)
POST /analyse → protected; returns verdict JSON + HTML highlights
"""
from __future__ import annotations
import os, re, html
from datetime import datetime, timedelta
from typing import List
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from huggingface_hub import hf_hub_download
from fastapi import FastAPI, HTTPException, Depends
from fastapi.security import OAuth2PasswordBearer, OAuth2PasswordRequestForm
from fastapi.middleware.cors import CORSMiddleware
from jose import JWTError, jwt
from pydantic import BaseModel, Field
# ─── torch.compile shim (HF CPU runtime) ───────────────────────────────
if hasattr(torch, "compile"):
torch.compile = (lambda m=None,*a,**kw: m if callable(m) else (lambda f: f)) # type: ignore
os.environ["TORCHINDUCTOR_DISABLED"] = "1"
# ─── model / weight config ─────────────────────────────────────────────
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
WEIGHT_REPO = "Sleepyriizi/Orify-Text-Detection-Weights"
FILE_MAP = {"ensamble_1":"ensamble_1",
"ensamble_2.bin":"ensamble_2.bin",
"ensamble_3":"ensamble_3"}
BASE_MODEL = "answerdotai/ModernBERT-base"
NUM_LABELS = 41
LABELS = {i:n for i,n in enumerate([
"13B","30B","65B","7B","GLM130B","bloom_7b","bloomz","cohere","davinci",
"dolly","dolly-v2-12b","flan_t5_base","flan_t5_large","flan_t5_small",
"flan_t5_xl","flan_t5_xxl","gemma-7b-it","gemma2-9b-it","gpt-3.5-turbo",
"gpt-35","gpt-4","gpt-4o","gpt-j","gpt-neox","human","llama3-70b",
"llama3-8b","mixtral-8x7b","opt-1.3b","opt-125m","opt-13b","opt-2.7b",
"opt-30b","opt-350m","opt-6.7b","opt-iml-30b","opt-iml-max-1.3b",
"t0-11b","t0-3b","text-davinci-002","text-davinci-003"
])}
# ─── JWT helpers ───────────────────────────────────────────────────────
SECRET_KEY = os.getenv("SECRET_KEY")
if not SECRET_KEY:
raise RuntimeError("Set the SECRET_KEY env-var in Space ➜ Settings ➜ Secrets")
ALGORITHM = "HS256"
ACCESS_TOKEN_EXPIRE_HOURS = 24
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
def _create_token(data: dict, exp_hours: int = ACCESS_TOKEN_EXPIRE_HOURS) -> str:
to_encode = data.copy()
to_encode["exp"] = datetime.utcnow() + timedelta(hours=exp_hours)
return jwt.encode(to_encode, SECRET_KEY, algorithm=ALGORITHM)
async def _current_user(token: str = Depends(oauth2_scheme)):
try:
payload = jwt.decode(token, SECRET_KEY, algorithms=[ALGORITHM])
return payload.get("sub") or "anonymous"
except JWTError:
raise HTTPException(401, "Invalid or expired token")
# ─── load ensemble once ────────────────────────────────────────────────
print("🔄 Downloading weights …", flush=True)
local_paths = {k:hf_hub_download(WEIGHT_REPO,f,resume_download=True)
for k,f in FILE_MAP.items()}
print("🧩 Initialising models …", flush=True)
_tok = AutoTokenizer.from_pretrained(BASE_MODEL)
_models: List[AutoModelForSequenceClassification] = []
for p in local_paths.values():
m = AutoModelForSequenceClassification.from_pretrained(BASE_MODEL,
num_labels=NUM_LABELS)
m.load_state_dict(torch.load(p, map_location=DEVICE))
m.to(DEVICE).eval()
_models.append(m)
print("✅ Ensemble ready")
# ─── tiny helpers ──────────────────────────────────────────────────────
def _tidy(text: str) -> str:
text = text.replace("\r\n", "\n").replace("\r", "\n")
text = re.sub(r"\n\s*\n+", "\n\n", text)
text = re.sub(r"[ \t]+", " ", text)
text = re.sub(r"(\w+)-\n(\w+)", r"\1\2", text)
text = re.sub(r"(?<!\n)\n(?!\n)", " ", text)
return text.strip()
def _infer(seg: str):
inp = _tok(seg, return_tensors="pt", truncation=True, padding=True).to(DEVICE)
with torch.no_grad():
probs = torch.stack([torch.softmax(m(**inp).logits, dim=1) for m in _models]).mean(0)[0]
ai_probs = probs.clone(); ai_probs[24] = 0 # drop explicit “human” label
ai = ai_probs.sum().item()*100
human = 100 - ai
top3 = [LABELS[i] for i in torch.topk(ai_probs, 3).indices.tolist()]
return human, ai, top3
# ─── Pydantic schemas ─────────────────────────────────────────────────
from pydantic import BaseModel, Field
class Token(BaseModel):
access_token: str
token_type: str = "bearer"
class AnalyseIn(BaseModel):
text: str = Field(..., min_length=1)
class Line(BaseModel):
text: str; ai: float; human: float; top3: List[str]; reason: str
class AnalyseOut(BaseModel):
verdict: str; confidence: float; ai_avg: float; human_avg: float
per_line: List[Line]; highlight_html: str
# ─── FastAPI app ───────────────────────────────────────────────────────
app = FastAPI(title="Orify Text Detector API", version="1.0.0")
app.add_middleware(CORSMiddleware,
allow_origins=["*"], allow_methods=["*"], allow_headers=["*"])
@app.post("/token", response_model=Token, summary="Obtain JWT (demo accepts any creds)")
async def login(form: OAuth2PasswordRequestForm = Depends()):
return Token(access_token=_create_token({"sub": form.username}))
@app.post("/analyse", response_model=AnalyseOut, summary="Detect AI-generated text")
async def analyse(data: AnalyseIn, _user=Depends(_current_user)):
lines = _tidy(data.text).split("\n")
html_parts, per_line = [], []
h_sum = ai_sum = n = 0.0
for ln in lines:
if not ln.strip():
html_parts.append("<br>")
continue
n += 1
human, ai, top3 = _infer(ln)
h_sum += human; ai_sum += ai
cls = "ai-line" if ai > human else "human-line"
tip = f"AI {ai:.2f}% – Top-3: {', '.join(top3)}" if ai > human else f"Human {human:.2f}%"
html_parts.append(f"<span class='{cls} prob-tooltip' title='{tip}'>{html.escape(ln)}</span>")
reason = (f"High AI likelihood ({ai:.1f}%) – fingerprint ≈ {top3[0]}"
if ai > human else f"Lexical variety suggests human ({human:.1f}%)")
per_line.append(Line(text=ln, ai=ai, human=human, top3=top3, reason=reason))
human_avg = h_sum / n if n else 0
ai_avg = ai_sum / n if n else 0
verdict = "AI-generated" if ai_avg > human_avg else "Human-written"
confidence = max(human_avg, ai_avg)
badge = (f"<span class='ai-line' style='padding:6px 10px;font-weight:bold'>AI-generated {ai_avg:.2f}%</span>"
if verdict == "AI-generated" else
f"<span class='human-line' style='padding:6px 10px;font-weight:bold'>Human-written {human_avg:.2f}%</span>")
highlight_html = f"<h3>{badge}</h3><hr>" + "<br>".join(html_parts)
return AnalyseOut(verdict=verdict, confidence=confidence,
ai_avg=ai_avg, human_avg=human_avg,
per_line=per_line, highlight_html=highlight_html)
# ────── local dev: uvicorn app:app --reload ───────────────────────────
|