shamik
commited on
feat: adding multiagent script.
Browse files
src/agent_hackathon/multiagent.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import asyncio
|
2 |
+
import os
|
3 |
+
from datetime import date
|
4 |
+
|
5 |
+
from consts import PROJECT_ROOT_DIR
|
6 |
+
|
7 |
+
# from dotenv import find_dotenv, load_dotenv
|
8 |
+
from generate_arxiv_responses import ArxivResponseGenerator
|
9 |
+
from llama_index.core.agent.workflow import AgentWorkflow, ReActAgent
|
10 |
+
from llama_index.core.tools import FunctionTool
|
11 |
+
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
|
12 |
+
from llama_index.tools.duckduckgo import DuckDuckGoSearchToolSpec
|
13 |
+
|
14 |
+
from src.agent_hackathon.logger import get_logger
|
15 |
+
|
16 |
+
# _ = load_dotenv(dotenv_path=find_dotenv(raise_error_if_not_found=False), override=True)
|
17 |
+
|
18 |
+
logger = get_logger(log_name="multiagent", log_dir=PROJECT_ROOT_DIR / "logs")
|
19 |
+
|
20 |
+
|
21 |
+
class MultiAgentWorkflow:
|
22 |
+
"""Multi-agent workflow for retrieving research papers and related events."""
|
23 |
+
|
24 |
+
def __init__(self) -> None:
|
25 |
+
"""Initialize the workflow with LLM, tools, and generator."""
|
26 |
+
logger.info("Initializing MultiAgentWorkflow.")
|
27 |
+
self.llm = HuggingFaceInferenceAPI(
|
28 |
+
model="meta-llama/Llama-3.3-70B-Instruct",
|
29 |
+
provider="auto",
|
30 |
+
# provider="nebius",
|
31 |
+
temperature=0.1,
|
32 |
+
top_p=0.95,
|
33 |
+
max_tokens=8192
|
34 |
+
# api_key=os.getenv(key="NEBIUS_API_KEY"),
|
35 |
+
# base_url="https://api.studio.nebius.com/v1/",
|
36 |
+
)
|
37 |
+
self._generator = ArxivResponseGenerator(
|
38 |
+
vector_store_path=PROJECT_ROOT_DIR / "db/arxiv_docs.db"
|
39 |
+
)
|
40 |
+
# self._arxiv_rag_tool = FunctionTool.from_defaults(
|
41 |
+
# fn=self._arxiv_rag,
|
42 |
+
# name="arxiv_rag",
|
43 |
+
# description="Retrieves arxiv research papers.",
|
44 |
+
# return_direct=True,
|
45 |
+
# )
|
46 |
+
self._duckduckgo_search_tool = [
|
47 |
+
tool
|
48 |
+
for tool in DuckDuckGoSearchToolSpec().to_tool_list()
|
49 |
+
if tool.metadata.name == "duckduckgo_full_search"
|
50 |
+
]
|
51 |
+
# self._arxiv_agent = ReActAgent(
|
52 |
+
# name="arxiv_agent",
|
53 |
+
# description="Retrieves information about arxiv research papers",
|
54 |
+
# system_prompt="You are arxiv research paper agent, who retrieves information "
|
55 |
+
# "about arxiv research papers.",
|
56 |
+
# tools=[self._arxiv_rag_tool],
|
57 |
+
# llm=self.llm,
|
58 |
+
# )
|
59 |
+
self._websearch_agent = ReActAgent(
|
60 |
+
name="web_search",
|
61 |
+
description="Searches the web",
|
62 |
+
system_prompt="You are search engine who searches the web using duckduckgo tool",
|
63 |
+
tools=self._duckduckgo_search_tool,
|
64 |
+
llm=self.llm,
|
65 |
+
)
|
66 |
+
|
67 |
+
self._workflow = AgentWorkflow(
|
68 |
+
agents=[self._websearch_agent],
|
69 |
+
root_agent="web_search",
|
70 |
+
timeout=180,
|
71 |
+
)
|
72 |
+
# AgentWorkflow.from_tools_or_functions(
|
73 |
+
# tools_or_functions=self._duckduckgo_search_tool,
|
74 |
+
# llm=self.llm,
|
75 |
+
# system_prompt="You are an expert that "
|
76 |
+
# "searches for any corresponding events related to the "
|
77 |
+
# "user query "
|
78 |
+
# "using the duckduckgo_search_tool and returns the final results." \
|
79 |
+
# "Don't return the steps but execute the necessary tools that you have " \
|
80 |
+
# "access to and return the results.",
|
81 |
+
# timeout=180,
|
82 |
+
# )
|
83 |
+
|
84 |
+
logger.info("MultiAgentWorkflow initialized.")
|
85 |
+
|
86 |
+
def _arxiv_rag(self, query: str) -> str:
|
87 |
+
"""Retrieve research papers from arXiv based on the query.
|
88 |
+
|
89 |
+
Args:
|
90 |
+
query (str): The search query.
|
91 |
+
|
92 |
+
Returns:
|
93 |
+
str: Retrieved research papers as a string.
|
94 |
+
"""
|
95 |
+
return self._generator.retrieve_arxiv_papers(query=query)
|
96 |
+
|
97 |
+
def _clean_response(self, result: str) -> str:
|
98 |
+
"""Removes the think tags.
|
99 |
+
|
100 |
+
Args:
|
101 |
+
result (str): The result with the <think></think> content.
|
102 |
+
|
103 |
+
Returns:
|
104 |
+
str: The result without the <think></think> content.
|
105 |
+
"""
|
106 |
+
if result.find("</think>"):
|
107 |
+
result = result[result.find("</think>") + len("</think>") :]
|
108 |
+
return result
|
109 |
+
|
110 |
+
async def run(self, user_query: str) -> str:
|
111 |
+
"""Run the multi-agent workflow for a given user query.
|
112 |
+
|
113 |
+
Args:
|
114 |
+
user_query (str): The user's search query.
|
115 |
+
|
116 |
+
Returns:
|
117 |
+
str: The output string.
|
118 |
+
"""
|
119 |
+
logger.info("Running multi-agent workflow.")
|
120 |
+
try:
|
121 |
+
research_papers = self._arxiv_rag(query=user_query)
|
122 |
+
user_msg = (
|
123 |
+
f"search with the web search agent to find any relevant events related to: {user_query}.\n"
|
124 |
+
f" The web search results relevant to the current year: {date.today().year}. \n"
|
125 |
+
)
|
126 |
+
web_search_results = await self._workflow.run(user_msg=user_msg)
|
127 |
+
final_res = (
|
128 |
+
research_papers + "\n\n" + web_search_results.response.blocks[0].text
|
129 |
+
)
|
130 |
+
logger.info("Workflow run completed successfully.")
|
131 |
+
return final_res
|
132 |
+
except Exception as err:
|
133 |
+
logger.error(f"Workflow run failed: {err}")
|
134 |
+
raise
|
135 |
+
|
136 |
+
|
137 |
+
if __name__ == "__main__":
|
138 |
+
USER_QUERY = "i want to learn more about nlp"
|
139 |
+
workflow = MultiAgentWorkflow()
|
140 |
+
logger.info("Starting workflow for user query.")
|
141 |
+
try:
|
142 |
+
result = asyncio.run(workflow.run(user_query=USER_QUERY))
|
143 |
+
logger.info("Workflow finished. Output below:")
|
144 |
+
print(result)
|
145 |
+
except Exception as err:
|
146 |
+
logger.error(f"Error during workflow execution: {err}")
|