shamik
commited on
fix: code fix.
Browse files
src/agent_hackathon/create_vector_db.py
CHANGED
@@ -138,12 +138,12 @@ class VectorDBCreator:
|
|
138 |
logger.info("Pipeline finished.")
|
139 |
|
140 |
|
141 |
-
if __name__ == "__main__":
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
-
|
149 |
-
|
|
|
138 |
logger.info("Pipeline finished.")
|
139 |
|
140 |
|
141 |
+
# if __name__ == "__main__":
|
142 |
+
# logger.info("Script started.")
|
143 |
+
# # Optionally load environment variables if needed
|
144 |
+
# _ = load_dotenv(dotenv_path=find_dotenv(raise_error_if_not_found=True))
|
145 |
+
# creator = VectorDBCreator(
|
146 |
+
# data_path=f"{PROJECT_ROOT_DIR}/data/cs_data_arxiv.json", db_uri="arxiv_docs.db"
|
147 |
+
# )
|
148 |
+
# creator.run()
|
149 |
+
# logger.info("Script finished.")
|
src/agent_hackathon/generate_arxiv_responses.py
CHANGED
@@ -21,6 +21,7 @@ class ArxivResponseGenerator:
|
|
21 |
"""Initializes the ArxivResponseGenerator."""
|
22 |
self.vector_store_path = vector_store_path
|
23 |
self.client = self._initialise_client()
|
|
|
24 |
logger.info("ArxivResponseGenerator initialized.")
|
25 |
|
26 |
def _initialise_retriever(self) -> Any:
|
@@ -40,7 +41,7 @@ class ArxivResponseGenerator:
|
|
40 |
)
|
41 |
retriever = retriever_class.build_retriever_engine()
|
42 |
logger.info("Retriever engine initialized.")
|
43 |
-
return retriever
|
44 |
|
45 |
def _initialise_client(self) -> InferenceClient:
|
46 |
"""
|
@@ -68,11 +69,15 @@ class ArxivResponseGenerator:
|
|
68 |
str: Formatted response from the LLM.
|
69 |
"""
|
70 |
logger.info(f"Retrieving arXiv papers for query: {query}")
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
|
|
|
|
|
|
|
|
76 |
completion = self.client.chat.completions.create(
|
77 |
model="meta-llama/Llama-4-Scout-17B-16E-Instruct",
|
78 |
temperature=0.1,
|
@@ -89,17 +94,15 @@ class ArxivResponseGenerator:
|
|
89 |
],
|
90 |
)
|
91 |
logger.info("Received completion from LLM.")
|
92 |
-
retriever_class.vector_store.client.close()
|
93 |
-
logger.info("Closed vector store client.")
|
94 |
return completion.choices[0].message.content
|
95 |
|
96 |
|
97 |
-
if __name__ == "__main__":
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
|
|
21 |
"""Initializes the ArxivResponseGenerator."""
|
22 |
self.vector_store_path = vector_store_path
|
23 |
self.client = self._initialise_client()
|
24 |
+
self.retriever = self._initialise_retriever()
|
25 |
logger.info("ArxivResponseGenerator initialized.")
|
26 |
|
27 |
def _initialise_retriever(self) -> Any:
|
|
|
41 |
)
|
42 |
retriever = retriever_class.build_retriever_engine()
|
43 |
logger.info("Retriever engine initialized.")
|
44 |
+
return retriever
|
45 |
|
46 |
def _initialise_client(self) -> InferenceClient:
|
47 |
"""
|
|
|
69 |
str: Formatted response from the LLM.
|
70 |
"""
|
71 |
logger.info(f"Retrieving arXiv papers for query: {query}")
|
72 |
+
|
73 |
+
try:
|
74 |
+
retrieved_content = json.dumps(
|
75 |
+
obj=[(i.get_content(), i.metadata) for i in self.retriever.retrieve(query)]
|
76 |
+
)
|
77 |
+
logger.info("Retrieved content from vector DB.")
|
78 |
+
except Exception as err:
|
79 |
+
logger.error(f"Error retrieving from vector DB: {err}")
|
80 |
+
raise
|
81 |
completion = self.client.chat.completions.create(
|
82 |
model="meta-llama/Llama-4-Scout-17B-16E-Instruct",
|
83 |
temperature=0.1,
|
|
|
94 |
],
|
95 |
)
|
96 |
logger.info("Received completion from LLM.")
|
|
|
|
|
97 |
return completion.choices[0].message.content
|
98 |
|
99 |
|
100 |
+
# if __name__ == "__main__":
|
101 |
+
# logger.info("Script started.")
|
102 |
+
# generator = ArxivResponseGenerator(
|
103 |
+
# vector_store_path=PROJECT_ROOT_DIR / "db/arxiv_docs.db"
|
104 |
+
# )
|
105 |
+
# query = "deep learning for NLP" # Example query, replace as needed
|
106 |
+
# result = generator.retrieve_arxiv_papers(query=query)
|
107 |
+
# print(result)
|
108 |
+
# logger.info("Script finished.")
|
src/agent_hackathon/query_vector_db.py
CHANGED
@@ -5,7 +5,6 @@ from dotenv import find_dotenv, load_dotenv
|
|
5 |
from huggingface_hub import login
|
6 |
from llama_index.core import VectorStoreIndex
|
7 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
8 |
-
from llama_index.llms.huggingface_api import HuggingFaceInferenceAPI
|
9 |
from llama_index.vector_stores.milvus import MilvusVectorStore
|
10 |
|
11 |
from src.agent_hackathon.consts import PROJECT_ROOT_DIR
|
@@ -23,7 +22,6 @@ class RetrieverEngineBuilder:
|
|
23 |
self,
|
24 |
hf_token_env: str = "HF_TOKEN",
|
25 |
embedding_model: str = "Qwen/Qwen3-Embedding-0.6B",
|
26 |
-
llm_model: str = "meta-llama/Llama-4-Scout-17B-16E-Instruct",
|
27 |
vector_store: MilvusVectorStore = None,
|
28 |
device: str = "cpu",
|
29 |
) -> None:
|
@@ -33,27 +31,21 @@ class RetrieverEngineBuilder:
|
|
33 |
Args:
|
34 |
hf_token_env: Environment variable name for HuggingFace token.
|
35 |
embedding_model: Name of the embedding model.
|
36 |
-
llm_model: Name of the LLM model.
|
37 |
vector_store: An instance of MilvusVectorStore.
|
38 |
device: Device to run the embedding model on.
|
39 |
"""
|
40 |
self.hf_token_env = hf_token_env
|
41 |
self.embedding_model = embedding_model
|
42 |
-
self.llm_model = llm_model
|
43 |
self.vector_store = vector_store
|
44 |
self.device = device
|
45 |
|
46 |
logger.info("Initializing RetrieverEngineBuilder.")
|
47 |
-
self._login_huggingface()
|
48 |
-
self._load_env()
|
49 |
|
50 |
self.embed_model = HuggingFaceEmbedding(
|
51 |
model_name=self.embedding_model, device=self.device
|
52 |
)
|
53 |
-
self.llm = HuggingFaceInferenceAPI(
|
54 |
-
model=self.llm_model,
|
55 |
-
provider="auto",
|
56 |
-
)
|
57 |
logger.info("RetrieverEngineBuilder initialized.")
|
58 |
|
59 |
def _login_huggingface(self) -> None:
|
@@ -65,7 +57,7 @@ class RetrieverEngineBuilder:
|
|
65 |
def _load_env(self) -> None:
|
66 |
"""Load environment variables from .env file."""
|
67 |
logger.info("Loading environment variables.")
|
68 |
-
_ = load_dotenv(dotenv_path=find_dotenv(raise_error_if_not_found=
|
69 |
logger.info("Environment variables loaded.")
|
70 |
|
71 |
def build_retriever_engine(self) -> Any:
|
|
|
5 |
from huggingface_hub import login
|
6 |
from llama_index.core import VectorStoreIndex
|
7 |
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
|
|
8 |
from llama_index.vector_stores.milvus import MilvusVectorStore
|
9 |
|
10 |
from src.agent_hackathon.consts import PROJECT_ROOT_DIR
|
|
|
22 |
self,
|
23 |
hf_token_env: str = "HF_TOKEN",
|
24 |
embedding_model: str = "Qwen/Qwen3-Embedding-0.6B",
|
|
|
25 |
vector_store: MilvusVectorStore = None,
|
26 |
device: str = "cpu",
|
27 |
) -> None:
|
|
|
31 |
Args:
|
32 |
hf_token_env: Environment variable name for HuggingFace token.
|
33 |
embedding_model: Name of the embedding model.
|
|
|
34 |
vector_store: An instance of MilvusVectorStore.
|
35 |
device: Device to run the embedding model on.
|
36 |
"""
|
37 |
self.hf_token_env = hf_token_env
|
38 |
self.embedding_model = embedding_model
|
|
|
39 |
self.vector_store = vector_store
|
40 |
self.device = device
|
41 |
|
42 |
logger.info("Initializing RetrieverEngineBuilder.")
|
43 |
+
# self._login_huggingface()
|
44 |
+
# self._load_env()
|
45 |
|
46 |
self.embed_model = HuggingFaceEmbedding(
|
47 |
model_name=self.embedding_model, device=self.device
|
48 |
)
|
|
|
|
|
|
|
|
|
49 |
logger.info("RetrieverEngineBuilder initialized.")
|
50 |
|
51 |
def _login_huggingface(self) -> None:
|
|
|
57 |
def _load_env(self) -> None:
|
58 |
"""Load environment variables from .env file."""
|
59 |
logger.info("Loading environment variables.")
|
60 |
+
_ = load_dotenv(dotenv_path=find_dotenv(raise_error_if_not_found=False))
|
61 |
logger.info("Environment variables loaded.")
|
62 |
|
63 |
def build_retriever_engine(self) -> Any:
|