Spaces:
Sleeping
Sleeping
import os | |
import yt_dlp | |
import gradio as gr | |
from faster_whisper import WhisperModel | |
from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer | |
import openai | |
import torch | |
# Optional: Set your OpenAI API key (use env var for security) | |
openai.api_key = "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" # Replace with your real key or set as os.environ["OPENAI_API_KEY"] | |
def download_and_extract_audio(youtube_url): | |
output_path = "downloads" | |
os.makedirs(output_path, exist_ok=True) | |
ydl_opts = { | |
'format': 'bestaudio/best', | |
'outtmpl': os.path.join(output_path, '%(id)s.%(ext)s'), | |
'postprocessors': [{ | |
'key': 'FFmpegExtractAudio', | |
'preferredcodec': 'mp3', | |
'preferredquality': '192', | |
}], | |
} | |
with yt_dlp.YoutubeDL(ydl_opts) as ydl: | |
info_dict = ydl.extract_info(youtube_url, download=True) | |
video_id = info_dict.get("id", None) | |
filename = os.path.join(output_path, f"{video_id}.mp3") | |
return filename | |
def transcribe_audio(audio_path): | |
model = WhisperModel("base", compute_type="int8", device="cuda" if torch.cuda.is_available() else "cpu") | |
segments, _ = model.transcribe(audio_path) | |
transcript = " ".join([seg.text for seg in segments]) | |
return transcript | |
# Preload FLAN-T5 model offline | |
tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large") | |
model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-large") | |
local_gen = pipeline("text2text-generation", model=model, tokenizer=tokenizer) | |
def generate_response(transcript, user_prompt, use_online=False): | |
prompt = f"""You are a helpful AI assistant. Based on the transcript of a video, please {user_prompt.strip().lower()}. | |
Transcript: | |
{transcript[:3000]}""" | |
if use_online: | |
try: | |
response = openai.ChatCompletion.create( | |
model="gpt-4", | |
messages=[{"role": "user", "content": prompt}], | |
max_tokens=1000 | |
) | |
return response.choices[0].message["content"] | |
except Exception as e: | |
return f"β οΈ Online API failed: {str(e)}" | |
else: | |
result = local_gen(prompt, max_length=1024, do_sample=False) | |
return result[0]['generated_text'] | |
def enhanced_ai_study_pipeline(video_source, youtube_url, upload_file, user_prompt, use_online_api): | |
try: | |
if video_source == "YouTube URL": | |
audio_path = download_and_extract_audio(youtube_url) | |
elif video_source == "Upload File" and upload_file is not None: | |
audio_path = upload_file.name | |
else: | |
return "No valid input provided.", "" | |
transcript = transcribe_audio(audio_path) | |
ai_response = generate_response(transcript, user_prompt, use_online=use_online_api) | |
return transcript, ai_response | |
except Exception as e: | |
return "Error occurred", str(e) | |
video_input = gr.Radio(["YouTube URL", "Upload File"], label="Video Source") | |
youtube_url = gr.Textbox(label="Enter YouTube URL") | |
upload_file = gr.File(label="Upload a Video File", file_types=[".mp4", ".mp3", ".wav"]) | |
user_prompt = gr.Textbox(label="What do you want from the transcript?", placeholder="e.g., Prepare a diet plan based on this video") | |
use_online_api = gr.Checkbox(label="Use Online API (GPT-4)", value=False) | |
gr.Interface( | |
fn=enhanced_ai_study_pipeline, | |
inputs=[video_input, youtube_url, upload_file, user_prompt, use_online_api], | |
outputs=[ | |
gr.Textbox(label="Transcript"), | |
gr.Textbox(label="AI Response") | |
], | |
title="π AI Transcription Assistant (Offline + Online GPT)", | |
description="Upload or paste a YouTube video. Enter your goal and get a smart AI answer. Works offline with FLAN-T5 or online with GPT-4." | |
).launch(share=True) | |