import os import yt_dlp import gradio as gr from faster_whisper import WhisperModel from transformers import pipeline, AutoModelForSeq2SeqLM, AutoTokenizer import openai import torch # Optional: Set your OpenAI API key (use env var for security) openai.api_key = "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" # Replace with your real key or set as os.environ["OPENAI_API_KEY"] def download_and_extract_audio(youtube_url): output_path = "downloads" os.makedirs(output_path, exist_ok=True) ydl_opts = { 'format': 'bestaudio/best', 'outtmpl': os.path.join(output_path, '%(id)s.%(ext)s'), 'postprocessors': [{ 'key': 'FFmpegExtractAudio', 'preferredcodec': 'mp3', 'preferredquality': '192', }], } with yt_dlp.YoutubeDL(ydl_opts) as ydl: info_dict = ydl.extract_info(youtube_url, download=True) video_id = info_dict.get("id", None) filename = os.path.join(output_path, f"{video_id}.mp3") return filename def transcribe_audio(audio_path): model = WhisperModel("base", compute_type="int8", device="cuda" if torch.cuda.is_available() else "cpu") segments, _ = model.transcribe(audio_path) transcript = " ".join([seg.text for seg in segments]) return transcript # Preload FLAN-T5 model offline tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-large") model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-large") local_gen = pipeline("text2text-generation", model=model, tokenizer=tokenizer) def generate_response(transcript, user_prompt, use_online=False): prompt = f"""You are a helpful AI assistant. Based on the transcript of a video, please {user_prompt.strip().lower()}. Transcript: {transcript[:3000]}""" if use_online: try: response = openai.ChatCompletion.create( model="gpt-4", messages=[{"role": "user", "content": prompt}], max_tokens=1000 ) return response.choices[0].message["content"] except Exception as e: return f"⚠️ Online API failed: {str(e)}" else: result = local_gen(prompt, max_length=1024, do_sample=False) return result[0]['generated_text'] def enhanced_ai_study_pipeline(video_source, youtube_url, upload_file, user_prompt, use_online_api): try: if video_source == "YouTube URL": audio_path = download_and_extract_audio(youtube_url) elif video_source == "Upload File" and upload_file is not None: audio_path = upload_file.name else: return "No valid input provided.", "" transcript = transcribe_audio(audio_path) ai_response = generate_response(transcript, user_prompt, use_online=use_online_api) return transcript, ai_response except Exception as e: return "Error occurred", str(e) video_input = gr.Radio(["YouTube URL", "Upload File"], label="Video Source") youtube_url = gr.Textbox(label="Enter YouTube URL") upload_file = gr.File(label="Upload a Video File", file_types=[".mp4", ".mp3", ".wav"]) user_prompt = gr.Textbox(label="What do you want from the transcript?", placeholder="e.g., Prepare a diet plan based on this video") use_online_api = gr.Checkbox(label="Use Online API (GPT-4)", value=False) gr.Interface( fn=enhanced_ai_study_pipeline, inputs=[video_input, youtube_url, upload_file, user_prompt, use_online_api], outputs=[ gr.Textbox(label="Transcript"), gr.Textbox(label="AI Response") ], title="📚 AI Transcription Assistant (Offline + Online GPT)", description="Upload or paste a YouTube video. Enter your goal and get a smart AI answer. Works offline with FLAN-T5 or online with GPT-4." ).launch(share=True)