Spaces:
Running
Running
File size: 28,745 Bytes
f01d7e2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 |
import json
import os
from enum import Enum
from typing import List, Optional
import pandas as pd
import requests
import streamlit as st
from datasets import load_dataset
from dotenv import load_dotenv
from pydantic import BaseModel, Field
# Load environment variables from .env file (for local development)
load_dotenv()
# Set up page config with custom styling
st.set_page_config(
page_title="π€ LLM Data Analyst Agent",
layout="wide",
page_icon="π€",
initial_sidebar_state="expanded",
)
# Custom CSS for styling
st.markdown(
"""
<style>
/* Main theme colors */
:root {
--primary-color: #1f77b4;
--secondary-color: #ff7f0e;
--success-color: #2ca02c;
--error-color: #d62728;
--warning-color: #ff9800;
--background-color: #0e1117;
--card-background: #262730;
}
/* Custom styling for the main container */
.main-header {
background: linear-gradient(90deg, #1f77b4 0%, #ff7f0e 100%);
padding: 2rem 1rem;
border-radius: 10px;
margin-bottom: 2rem;
text-align: center;
color: white;
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
}
.main-header h1 {
margin: 0;
font-size: 2.5rem;
font-weight: 700;
text-shadow: 2px 2px 4px rgba(0,0,0,0.3);
}
.main-header p {
margin: 0.5rem 0 0 0;
font-size: 1.2rem;
opacity: 0.9;
}
/* Card styling */
.info-card {
background: var(--card-background);
padding: 1.5rem;
border-radius: 10px;
border-left: 4px solid var(--primary-color);
margin: 1rem 0;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
}
.success-card {
background: linear-gradient(90deg, rgba(44, 160, 44, 0.1) 0%, rgba(44, 160, 44, 0.05) 100%);
border-left: 4px solid var(--success-color);
padding: 1rem;
border-radius: 8px;
margin: 1rem 0;
}
.error-card {
background: linear-gradient(90deg, rgba(214, 39, 40, 0.1) 0%, rgba(214, 39, 40, 0.05) 100%);
border-left: 4px solid var(--error-color);
padding: 1rem;
border-radius: 8px;
margin: 1rem 0;
}
.quick-actions-card {
background: linear-gradient(135deg, #f8f9fa 0%, #e9ecef 100%);
padding: 1.5rem;
border-radius: 10px;
border-left: 4px solid var(--primary-color);
margin: 1rem 0;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
color: #2c3e50;
}
.quick-actions-card h3 {
color: var(--primary-color);
margin-top: 0;
}
.quick-actions-card ul {
margin-bottom: 0;
}
.quick-actions-card li {
margin-bottom: 0.5rem;
color: #495057;
}
/* Button styling */
.stButton > button {
background: linear-gradient(90deg, #1f77b4 0%, #ff7f0e 100%);
color: white;
border: none;
border-radius: 25px;
padding: 0.5rem 2rem;
font-weight: 600;
transition: all 0.3s ease;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
}
.stButton > button:hover {
transform: translateY(-2px);
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.3);
}
/* Sidebar styling */
.css-1d391kg {
background: linear-gradient(180deg, #1f77b4 0%, #0e4b7a 100%);
}
/* Metrics styling */
.metric-container {
background: var(--card-background);
padding: 1rem;
border-radius: 8px;
text-align: center;
margin: 0.5rem 0;
border: 1px solid rgba(255, 255, 255, 0.1);
}
/* Chat message styling */
.user-message {
background: linear-gradient(90deg, rgba(31, 119, 180, 0.1) 0%, rgba(31, 119, 180, 0.05) 100%);
padding: 1rem;
border-radius: 10px;
margin: 0.5rem 0;
border-left: 4px solid var(--primary-color);
}
.assistant-message {
background: linear-gradient(90deg, rgba(255, 127, 14, 0.1) 0%, rgba(255, 127, 14, 0.05) 100%);
padding: 1rem;
border-radius: 10px;
margin: 0.5rem 0;
border-left: 4px solid var(--secondary-color);
}
/* Planning mode styling */
.planning-badge {
display: inline-block;
padding: 0.3rem 0.8rem;
border-radius: 15px;
font-size: 0.8rem;
font-weight: 600;
text-transform: uppercase;
letter-spacing: 0.5px;
}
.pre-planning {
background: rgba(31, 119, 180, 0.2);
color: var(--primary-color);
border: 1px solid var(--primary-color);
}
.reactive-planning {
background: rgba(255, 127, 14, 0.2);
color: var(--secondary-color);
border: 1px solid var(--secondary-color);
}
/* Animation for thinking indicator */
@keyframes pulse {
0% { opacity: 1; }
50% { opacity: 0.5; }
100% { opacity: 1; }
}
.thinking-indicator {
animation: pulse 2s infinite;
}
/* Improved expander styling */
.streamlit-expanderHeader {
background: var(--card-background);
border-radius: 5px;
}
</style>
""",
unsafe_allow_html=True,
)
# API configuration - works for both local and Hugging Face deployment
api_key = os.environ.get("NEBIUS_API_KEY")
if not api_key:
st.markdown(
"""
<div class="error-card">
<h3>π API Key Configuration Required</h3>
<h4>For Local Development:</h4>
<ol>
<li>Open the <code>.env</code> file in your project directory</li>
<li>Replace <code>your_api_key_here</code> with your actual Nebius API key</li>
<li>Save the file and restart the application</li>
</ol>
<p><strong>Example .env file:</strong></p>
<pre>NEBIUS_API_KEY=your_actual_api_key_here</pre>
<h4>For Hugging Face Spaces Deployment:</h4>
<ol>
<li>Go to your Space settings</li>
<li>Navigate to the "Variables and secrets" section</li>
<li>Add a new secret: <code>NEBIUS_API_KEY</code> with your API key value</li>
<li>Restart your Space</li>
</ol>
<p><em>π‘ The app will automatically detect the environment and use the appropriate method.</em></p>
</div>
""",
unsafe_allow_html=True,
)
st.stop()
# Set the API key in environment for consistency
os.environ["OPENAI_API_KEY"] = api_key
# Nebius API settings
NEBIUS_API_URL = "https://api.studio.nebius.com/v1/chat/completions"
MODEL_NAME = "Qwen/Qwen3-30B-A3B"
# Function to call Nebius API
def call_nebius_api(messages, response_format=None, thinking_mode=False):
headers = {"Content-Type": "application/json", "Authorization": f"Bearer {api_key}"}
payload = {"model": MODEL_NAME, "messages": messages}
if response_format:
payload["response_format"] = response_format
# If in thinking mode, ask the model to show its reasoning
if thinking_mode:
# Add instruction to show thinking process
last_message = messages[-1]
enhanced_content = (
f"{last_message['content']}\n\n"
f"Important: First explain your thinking process step by step, "
f"then provide your final answer clearly labeled as 'FINAL ANSWER:'"
)
messages[-1]["content"] = enhanced_content
payload["messages"] = messages
try:
response = requests.post(NEBIUS_API_URL, headers=headers, json=payload)
response.raise_for_status()
return response.json()
except Exception as e:
st.error(f"API Error: {str(e)}")
if hasattr(e, "response") and hasattr(e.response, "text"):
st.error(f"Response: {e.response.text}")
return None
# Load Bitext dataset
@st.cache_data
def load_bitext_dataset():
try:
dataset = load_dataset(
"bitext/Bitext-customer-support-llm-chatbot-training-dataset"
)
df = pd.DataFrame(dataset["train"])
return df
except Exception as e:
st.error(f"Error loading dataset: {e}")
return None
# Define enums for request types
class AnalysisType(str, Enum):
QUANTITATIVE = "quantitative"
QUALITATIVE = "qualitative"
OUT_OF_SCOPE = "out_of_scope"
class ColumnType(str, Enum):
CATEGORY = "category"
INTENT = "intent"
CUSTOMER = "customer"
AGENT = "agent"
# Define schema for agent requests
class AgentRequest(BaseModel):
question: str = Field(..., description="The user's question")
analysis_type: AnalysisType = Field(..., description="Type of analysis to perform")
target_columns: Optional[List[ColumnType]] = Field(
None, description="Columns to analyze"
)
is_follow_up: bool = Field(
False, description="Whether this is a follow-up question"
)
previous_context: Optional[str] = Field(
None, description="Context from previous question"
)
# Function to classify the user question
def classify_question(
question: str, previous_context: Optional[str] = None
) -> AgentRequest:
"""
Use the LLM to classify the question and determine the analysis type and target columns.
"""
system_prompt = """
You are a data analyst assistant that classifies user questions about a customer support dataset.
The dataset contains customer support conversations with these columns:
- category: The category of the customer query
- intent: The specific intent of the customer query
- customer: The customer's message
- agent: The agent's response
Classify the question into one of these types:
- quantitative: Questions about statistics, frequencies, distributions, or examples of categories/intents
- qualitative: Questions asking for summaries or insights about specific categories/intents
- out_of_scope: Questions that cannot be answered using the dataset
Also identify which columns are relevant to the question.
Return a JSON object with the following fields:
{
"analysis_type": "quantitative" | "qualitative" | "out_of_scope",
"target_columns": ["category", "intent", "customer", "agent"]
}
"""
context_info = f"\nPrevious context: {previous_context}" if previous_context else ""
user_prompt = f"Classify this question: {question}{context_info}"
response = call_nebius_api(
[
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_prompt},
],
response_format={"type": "json_object"},
)
if not response:
# Fallback if API call fails
return AgentRequest(
question=question,
analysis_type=AnalysisType.OUT_OF_SCOPE,
target_columns=[],
is_follow_up=bool(previous_context),
previous_context=previous_context,
)
try:
content = (
response.get("choices", [{}])[0].get("message", {}).get("content", "{}")
)
result = json.loads(content)
# Convert string column names to ColumnType enum values
target_columns = []
for col in result.get("target_columns", []):
try:
target_columns.append(ColumnType(col))
except ValueError:
pass # Skip invalid column types
return AgentRequest(
question=question,
analysis_type=AnalysisType(result.get("analysis_type", "out_of_scope")),
target_columns=target_columns,
is_follow_up=bool(previous_context),
previous_context=previous_context,
)
except (json.JSONDecodeError, ValueError) as e:
st.warning(f"Error parsing API response: {str(e)}")
return AgentRequest(
question=question,
analysis_type=AnalysisType.OUT_OF_SCOPE,
target_columns=[],
is_follow_up=bool(previous_context),
previous_context=previous_context,
)
# Function to generate a response to the user's question
def generate_response(df: pd.DataFrame, request: AgentRequest) -> str:
"""
Generate a response to the user's question based on the request classification.
"""
# Get thinking mode setting from session state
show_thinking = st.session_state.get("show_thinking", True)
if request.analysis_type == AnalysisType.OUT_OF_SCOPE:
return "I'm sorry, but I can't answer that question based on the available customer support data."
# Prepare context with dataset information
data_description = f"Dataset contains {len(df)} customer support conversations."
if request.analysis_type == AnalysisType.QUANTITATIVE:
# For quantitative questions, prepare relevant statistics
stats_context = ""
if ColumnType.CATEGORY in request.target_columns:
category_counts = df["category"].value_counts().to_dict()
stats_context += f"\nCategory distribution: {json.dumps(category_counts)}"
if ColumnType.INTENT in request.target_columns:
intent_counts = df["intent"].value_counts().to_dict()
stats_context += f"\nIntent distribution: {json.dumps(intent_counts)}"
# If specific examples are requested, include sample data
if "example" in request.question.lower() or "show" in request.question.lower():
for col in request.target_columns:
if col.value in df.columns:
# Try to extract a specific value the user might be looking for
search_terms = [term.lower() for term in df[col.value].unique()]
for term in search_terms:
if term in request.question.lower():
examples = (
df[df[col.value].str.lower() == term]
.head(5)
.to_dict("records")
)
stats_context += f"\nExamples of {col.value}='{term}': {json.dumps(examples)}"
break
else: # QUALITATIVE
stats_context = ""
# For qualitative questions, prepare relevant data for summarization
for col in request.target_columns:
if col.value in df.columns:
unique_values = df[col.value].unique().tolist()
stats_context += (
f"\nUnique values for {col.value}: {json.dumps(unique_values)}"
)
# If there's a specific category/intent mentioned in the question
for value in unique_values:
if value.lower() in request.question.lower():
filtered_data = (
df[df[col.value] == value].head(10).to_dict("records")
)
stats_context += f"\nSample data for {col.value}='{value}': {json.dumps(filtered_data)}"
break
# Generate the response using LLM
system_prompt = f"""
You are a data analyst assistant that answers questions about a customer support dataset.
{data_description}
Use the following context to answer the question:
{stats_context}
Be concise and data-driven in your response. Mention specific numbers and patterns when appropriate.
If there isn't enough information to fully answer the question, acknowledge that limitation.
"""
previous_context = ""
if request.is_follow_up:
previous_context = (
f"\nThis is a follow-up to previous context: {request.previous_context}"
)
response = call_nebius_api(
[
{"role": "system", "content": system_prompt},
{
"role": "user",
"content": f"Question: {request.question}{previous_context}",
},
],
thinking_mode=show_thinking,
)
if not response:
return "I'm sorry, I encountered an error while processing your question. Please try again."
return (
response.get("choices", [{}])[0]
.get("message", {})
.get("content", "I couldn't generate a response. Please try again.")
)
# Function to plan and execute approach based on mode
def process_question(
df: pd.DataFrame, question: str, mode: str, previous_context: Optional[str] = None
) -> str:
"""
Process the user question using the specified planning mode.
"""
# Add thinking indicator to the UI with custom styling
thinking_placeholder = st.empty()
thinking_placeholder.markdown(
"""
<div class="thinking-indicator">
<div class="info-card">
βοΈ <strong>Agent is thinking...</strong> Analyzing your question and preparing response.
</div>
</div>
""",
unsafe_allow_html=True,
)
# Get thinking mode setting from session state
show_thinking = st.session_state.get("show_thinking", True)
if mode == "pre_planning":
# Pre-planning: First classify, then execute
request = classify_question(question, previous_context)
st.session_state.last_request = request
# Show classification if thinking is enabled
if show_thinking:
thinking_placeholder.markdown(
f"""
<div class="info-card">
βοΈ <strong>Agent classified this as a
<span style="color: var(--primary-color);">{request.analysis_type}</span> question</strong>
<br>π Target columns: {[col.value for col in request.target_columns]}
</div>
""",
unsafe_allow_html=True,
)
result = generate_response(df, request)
else: # reactive_planning
# Reactive planning: Let the LLM decide approach dynamically
system_prompt = """
You are a data analyst assistant that answers questions about a customer support dataset.
The dataset contains customer support conversations with categories, intents, customer messages, and agent responses.
Analyze the question and determine how to approach it:
1. Identify if it's asking for statistics, examples, summaries, or insights
2. Determine which aspects of the data are relevant
3. Generate a direct and concise response based on the data
If the question cannot be answered with the customer support dataset, politely explain that it's outside your scope.
"""
# Prepare dataset information
data_description = f"Dataset with {len(df)} records. "
data_description += f"Sample of 5 records: {df.sample(5).to_dict('records')}"
data_description += f"\nColumns: {df.columns.tolist()}"
# Include full distributions for categories and intents
# Check if the question is about distributions or frequencies
question_lower = question.lower()
include_distributions = any(
term in question_lower
for term in [
"distribution",
"frequency",
"count",
"how many",
"most frequent",
"most common",
"statistics",
]
)
# Always include category values
data_description += f"\nCategory values: {df['category'].unique().tolist()}"
# Include full distribution data if the question appears to need it
if include_distributions:
if "category" in question_lower or "categories" in question_lower:
category_counts = df["category"].value_counts().to_dict()
data_description += (
f"\nCategory distribution: {json.dumps(category_counts)}"
)
if "intent" in question_lower or "intents" in question_lower:
intent_counts = df["intent"].value_counts().to_dict()
data_description += (
f"\nIntent distribution: {json.dumps(intent_counts)}"
)
else:
# Just provide a sample of intents if not specifically asking about them
data_description += f"\nIntent values sample: {df['intent'].sample(10).unique().tolist()}"
else:
# Just provide a sample of intents
data_description += (
f"\nIntent values sample: {df['intent'].sample(10).unique().tolist()}"
)
context_info = ""
if previous_context:
context_info = f"\nThis is a follow-up to: {previous_context}"
response = call_nebius_api(
[
{"role": "system", "content": system_prompt},
{
"role": "user",
"content": f"Question: {question}\n\nDataset information: {data_description}{context_info}",
},
],
thinking_mode=show_thinking,
)
if not response:
thinking_placeholder.empty()
return "I'm sorry, I encountered an error while processing your question. Please try again."
result = (
response.get("choices", [{}])[0]
.get("message", {})
.get("content", "I couldn't generate a response. Please try again.")
)
# Clear the thinking indicator
thinking_placeholder.empty()
# Process the result to separate thinking from final answer if needed
if show_thinking and "FINAL ANSWER:" in result:
parts = result.split("FINAL ANSWER:")
thinking = parts[0].strip()
final_answer = parts[1].strip()
# Display thinking and final answer with clear separation
with st.expander("π§ Agent's Thinking Process", expanded=True):
st.markdown(thinking)
return final_answer
else:
return result
# Main app interface
def main():
# Custom header
st.markdown(
"""
<div class="main-header">
<h1>π€ LLM-powered Data Analyst Agent</h1>
<p>Intelligent Analysis of Bitext Customer Support Dataset</p>
</div>
""",
unsafe_allow_html=True,
)
# Load dataset
with st.spinner("π Loading dataset..."):
df = load_bitext_dataset()
if df is None:
st.markdown(
"""
<div class="error-card">
<h3>β Dataset Loading Failed</h3>
<p>Failed to load dataset. Please check your internet connection and try again.</p>
</div>
""",
unsafe_allow_html=True,
)
return
# Success message with dataset info
st.markdown(
f"""
<div class="success-card">
<h3>β
Dataset Loaded Successfully</h3>
<p>Loaded <strong>{len(df):,}</strong> customer support records ready for analysis</p>
</div>
""",
unsafe_allow_html=True,
)
# Sidebar configuration
with st.sidebar:
st.markdown("## βοΈ Configuration")
# Planning mode selection with styling
st.markdown("### π§ Planning Mode")
planning_mode = st.radio(
"Select how the agent should approach questions:",
["pre_planning", "reactive_planning"],
format_func=lambda x: (
"π― Pre-planning + Execution"
if x == "pre_planning"
else "β‘ Reactive Dynamic Planning"
),
help="Choose between structured pre-analysis or dynamic reactive planning",
)
# Display current mode with badge
mode_class = (
"pre-planning" if planning_mode == "pre_planning" else "reactive-planning"
)
mode_name = (
"Pre-Planning" if planning_mode == "pre_planning" else "Reactive Planning"
)
st.markdown(
f"""
<div class="planning-badge {mode_class}">
{mode_name} Mode Active
</div>
""",
unsafe_allow_html=True,
)
st.markdown("---")
# Thinking process toggle
st.markdown("### π§ Agent Behavior")
if "show_thinking" not in st.session_state:
st.session_state.show_thinking = True
show_thinking = st.checkbox(
"π Show Agent's Thinking Process",
value=st.session_state.show_thinking,
help="Display the agent's reasoning and analysis steps",
)
st.session_state.show_thinking = show_thinking
st.markdown("---")
# Dataset stats in sidebar
st.markdown("### π Dataset Overview")
col1, col2 = st.columns(2)
with col1:
st.metric("π Total Records", f"{len(df):,}")
with col2:
st.metric("π Categories", len(df["category"].unique()))
st.metric("π― Unique Intents", len(df["intent"].unique()))
# Main content area
# Dataset information in an expandable section
with st.expander("π Dataset Information", expanded=False):
st.markdown("### Dataset Details")
# Create metrics row
metrics_col1, metrics_col2, metrics_col3, metrics_col4 = st.columns(4)
with metrics_col1:
st.metric("Total Records", f"{len(df):,}")
with metrics_col2:
st.metric("Columns", len(df.columns))
with metrics_col3:
st.metric("Categories", len(df["category"].unique()))
with metrics_col4:
st.metric("Intents", len(df["intent"].unique()))
st.markdown("### Sample Data")
st.dataframe(df.head(), use_container_width=True)
st.markdown("### Category Distribution")
st.bar_chart(df["category"].value_counts())
# Initialize session state for conversation history
if "conversation" not in st.session_state:
st.session_state.conversation = []
if "last_request" not in st.session_state:
st.session_state.last_request = None
# User input section
st.markdown("## π¬ Ask Your Question")
# Create a more prominent input area
user_question = st.text_input(
"What would you like to know about the customer support data?",
placeholder="e.g., What are the most common customer issues?",
key="user_input",
help="Ask questions about statistics, examples, or insights from the dataset",
)
# Submit button with custom styling
col1, col2, col3 = st.columns([1, 2, 1])
with col2:
submit_clicked = st.button("π Analyze Question", use_container_width=True)
if submit_clicked and user_question:
# Add user question to conversation
st.session_state.conversation.append({"role": "user", "content": user_question})
# Get previous context if this might be a follow-up
previous_context = None
if len(st.session_state.conversation) > 2:
# Get the previous assistant response
previous_context = st.session_state.conversation[-3]["content"]
# Process the question with enhanced loading indicator
with st.spinner("π€ Agent is analyzing your question..."):
response = process_question(
df, user_question, planning_mode, previous_context
)
# Add response to conversation
st.session_state.conversation.append({"role": "assistant", "content": response})
# Display conversation with styled messages
if st.session_state.conversation:
st.markdown("## π Conversation History")
for i, message in enumerate(st.session_state.conversation):
if message["role"] == "user":
st.markdown(
f"""
<div class="user-message">
<strong>π€ You:</strong> {message['content']}
</div>
""",
unsafe_allow_html=True,
)
else:
st.markdown(
f"""
<div class="assistant-message">
<strong>π€ Agent:</strong> {message['content']}
</div>
""",
unsafe_allow_html=True,
)
if i < len(st.session_state.conversation) - 1: # Not the last message
st.markdown("---")
# Clear conversation button
if st.button("ποΈ Clear Conversation"):
st.session_state.conversation = []
st.rerun()
if __name__ == "__main__":
main()
|