Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- README.md +43 -20
- app.py +845 -0
- requirements.txt +7 -3
README.md
CHANGED
@@ -1,20 +1,43 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# LLM-powered Data Analyst Agent
|
2 |
+
|
3 |
+
This Streamlit application uses an LLM-powered agent to analyze the Bitext Customer Support LLM Chatbot Training Dataset. The agent can answer user questions about the dataset, performing both structured (quantitative) and unstructured (qualitative) analysis.
|
4 |
+
|
5 |
+
## Features
|
6 |
+
|
7 |
+
- Ask questions about the customer support dataset
|
8 |
+
- Support for different types of analysis:
|
9 |
+
- Structured (Quantitative): Category frequencies, examples, intent distributions
|
10 |
+
- Unstructured (Qualitative): Summarize categories, analyze intents
|
11 |
+
- Scope detection to identify if questions are answerable from the dataset
|
12 |
+
- Support for follow-up questions
|
13 |
+
- Toggle between planning modes:
|
14 |
+
- Pre-planning + Execution: First classify the question, then execute the response
|
15 |
+
- ReActive Dynamic Planning: Let the LLM dynamically plan and execute the response
|
16 |
+
|
17 |
+
## Setup
|
18 |
+
|
19 |
+
1. Clone this repository
|
20 |
+
2. Install the required dependencies:
|
21 |
+
```
|
22 |
+
pip install -r requirements.txt
|
23 |
+
```
|
24 |
+
3. Run the Streamlit app:
|
25 |
+
```
|
26 |
+
streamlit run app.py
|
27 |
+
```
|
28 |
+
4. Enter your OpenAI API key when prompted
|
29 |
+
|
30 |
+
## Example Questions
|
31 |
+
|
32 |
+
- "What are the most frequent categories?"
|
33 |
+
- "Show examples of billing category"
|
34 |
+
- "What categories exist in the dataset?"
|
35 |
+
- "Summarize the technical support category"
|
36 |
+
- "What are the common intents in the billing category?"
|
37 |
+
- "How do agents typically respond to refund requests?"
|
38 |
+
|
39 |
+
## Requirements
|
40 |
+
|
41 |
+
- Python 3.8+
|
42 |
+
- OpenAI API key (gpt-4o model access)
|
43 |
+
- Internet connection (to download the dataset)
|
app.py
ADDED
@@ -0,0 +1,845 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import os
|
3 |
+
from enum import Enum
|
4 |
+
from typing import List, Optional
|
5 |
+
|
6 |
+
import pandas as pd
|
7 |
+
import requests
|
8 |
+
import streamlit as st
|
9 |
+
from datasets import load_dataset
|
10 |
+
from dotenv import load_dotenv
|
11 |
+
from pydantic import BaseModel, Field
|
12 |
+
|
13 |
+
# Load environment variables from .env file (for local development)
|
14 |
+
load_dotenv()
|
15 |
+
|
16 |
+
# Set up page config with custom styling
|
17 |
+
st.set_page_config(
|
18 |
+
page_title="π€ LLM Data Analyst Agent",
|
19 |
+
layout="wide",
|
20 |
+
page_icon="π€",
|
21 |
+
initial_sidebar_state="expanded",
|
22 |
+
)
|
23 |
+
|
24 |
+
# Custom CSS for styling
|
25 |
+
st.markdown(
|
26 |
+
"""
|
27 |
+
<style>
|
28 |
+
/* Main theme colors */
|
29 |
+
:root {
|
30 |
+
--primary-color: #1f77b4;
|
31 |
+
--secondary-color: #ff7f0e;
|
32 |
+
--success-color: #2ca02c;
|
33 |
+
--error-color: #d62728;
|
34 |
+
--warning-color: #ff9800;
|
35 |
+
--background-color: #0e1117;
|
36 |
+
--card-background: #262730;
|
37 |
+
}
|
38 |
+
|
39 |
+
/* Custom styling for the main container */
|
40 |
+
.main-header {
|
41 |
+
background: linear-gradient(90deg, #1f77b4 0%, #ff7f0e 100%);
|
42 |
+
padding: 2rem 1rem;
|
43 |
+
border-radius: 10px;
|
44 |
+
margin-bottom: 2rem;
|
45 |
+
text-align: center;
|
46 |
+
color: white;
|
47 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
48 |
+
}
|
49 |
+
|
50 |
+
.main-header h1 {
|
51 |
+
margin: 0;
|
52 |
+
font-size: 2.5rem;
|
53 |
+
font-weight: 700;
|
54 |
+
text-shadow: 2px 2px 4px rgba(0,0,0,0.3);
|
55 |
+
}
|
56 |
+
|
57 |
+
.main-header p {
|
58 |
+
margin: 0.5rem 0 0 0;
|
59 |
+
font-size: 1.2rem;
|
60 |
+
opacity: 0.9;
|
61 |
+
}
|
62 |
+
|
63 |
+
/* Card styling */
|
64 |
+
.info-card {
|
65 |
+
background: var(--card-background);
|
66 |
+
padding: 1.5rem;
|
67 |
+
border-radius: 10px;
|
68 |
+
border-left: 4px solid var(--primary-color);
|
69 |
+
margin: 1rem 0;
|
70 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
71 |
+
}
|
72 |
+
|
73 |
+
.success-card {
|
74 |
+
background: linear-gradient(90deg, rgba(44, 160, 44, 0.1) 0%, rgba(44, 160, 44, 0.05) 100%);
|
75 |
+
border-left: 4px solid var(--success-color);
|
76 |
+
padding: 1rem;
|
77 |
+
border-radius: 8px;
|
78 |
+
margin: 1rem 0;
|
79 |
+
}
|
80 |
+
|
81 |
+
.error-card {
|
82 |
+
background: linear-gradient(90deg, rgba(214, 39, 40, 0.1) 0%, rgba(214, 39, 40, 0.05) 100%);
|
83 |
+
border-left: 4px solid var(--error-color);
|
84 |
+
padding: 1rem;
|
85 |
+
border-radius: 8px;
|
86 |
+
margin: 1rem 0;
|
87 |
+
}
|
88 |
+
|
89 |
+
.quick-actions-card {
|
90 |
+
background: linear-gradient(135deg, #f8f9fa 0%, #e9ecef 100%);
|
91 |
+
padding: 1.5rem;
|
92 |
+
border-radius: 10px;
|
93 |
+
border-left: 4px solid var(--primary-color);
|
94 |
+
margin: 1rem 0;
|
95 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
96 |
+
color: #2c3e50;
|
97 |
+
}
|
98 |
+
|
99 |
+
.quick-actions-card h3 {
|
100 |
+
color: var(--primary-color);
|
101 |
+
margin-top: 0;
|
102 |
+
}
|
103 |
+
|
104 |
+
.quick-actions-card ul {
|
105 |
+
margin-bottom: 0;
|
106 |
+
}
|
107 |
+
|
108 |
+
.quick-actions-card li {
|
109 |
+
margin-bottom: 0.5rem;
|
110 |
+
color: #495057;
|
111 |
+
}
|
112 |
+
|
113 |
+
/* Button styling */
|
114 |
+
.stButton > button {
|
115 |
+
background: linear-gradient(90deg, #1f77b4 0%, #ff7f0e 100%);
|
116 |
+
color: white;
|
117 |
+
border: none;
|
118 |
+
border-radius: 25px;
|
119 |
+
padding: 0.5rem 2rem;
|
120 |
+
font-weight: 600;
|
121 |
+
transition: all 0.3s ease;
|
122 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
|
123 |
+
}
|
124 |
+
|
125 |
+
.stButton > button:hover {
|
126 |
+
transform: translateY(-2px);
|
127 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.3);
|
128 |
+
}
|
129 |
+
|
130 |
+
/* Sidebar styling */
|
131 |
+
.css-1d391kg {
|
132 |
+
background: linear-gradient(180deg, #1f77b4 0%, #0e4b7a 100%);
|
133 |
+
}
|
134 |
+
|
135 |
+
/* Metrics styling */
|
136 |
+
.metric-container {
|
137 |
+
background: var(--card-background);
|
138 |
+
padding: 1rem;
|
139 |
+
border-radius: 8px;
|
140 |
+
text-align: center;
|
141 |
+
margin: 0.5rem 0;
|
142 |
+
border: 1px solid rgba(255, 255, 255, 0.1);
|
143 |
+
}
|
144 |
+
|
145 |
+
/* Chat message styling */
|
146 |
+
.user-message {
|
147 |
+
background: linear-gradient(90deg, rgba(31, 119, 180, 0.1) 0%, rgba(31, 119, 180, 0.05) 100%);
|
148 |
+
padding: 1rem;
|
149 |
+
border-radius: 10px;
|
150 |
+
margin: 0.5rem 0;
|
151 |
+
border-left: 4px solid var(--primary-color);
|
152 |
+
}
|
153 |
+
|
154 |
+
.assistant-message {
|
155 |
+
background: linear-gradient(90deg, rgba(255, 127, 14, 0.1) 0%, rgba(255, 127, 14, 0.05) 100%);
|
156 |
+
padding: 1rem;
|
157 |
+
border-radius: 10px;
|
158 |
+
margin: 0.5rem 0;
|
159 |
+
border-left: 4px solid var(--secondary-color);
|
160 |
+
}
|
161 |
+
|
162 |
+
/* Planning mode styling */
|
163 |
+
.planning-badge {
|
164 |
+
display: inline-block;
|
165 |
+
padding: 0.3rem 0.8rem;
|
166 |
+
border-radius: 15px;
|
167 |
+
font-size: 0.8rem;
|
168 |
+
font-weight: 600;
|
169 |
+
text-transform: uppercase;
|
170 |
+
letter-spacing: 0.5px;
|
171 |
+
}
|
172 |
+
|
173 |
+
.pre-planning {
|
174 |
+
background: rgba(31, 119, 180, 0.2);
|
175 |
+
color: var(--primary-color);
|
176 |
+
border: 1px solid var(--primary-color);
|
177 |
+
}
|
178 |
+
|
179 |
+
.reactive-planning {
|
180 |
+
background: rgba(255, 127, 14, 0.2);
|
181 |
+
color: var(--secondary-color);
|
182 |
+
border: 1px solid var(--secondary-color);
|
183 |
+
}
|
184 |
+
|
185 |
+
/* Animation for thinking indicator */
|
186 |
+
@keyframes pulse {
|
187 |
+
0% { opacity: 1; }
|
188 |
+
50% { opacity: 0.5; }
|
189 |
+
100% { opacity: 1; }
|
190 |
+
}
|
191 |
+
|
192 |
+
.thinking-indicator {
|
193 |
+
animation: pulse 2s infinite;
|
194 |
+
}
|
195 |
+
|
196 |
+
/* Improved expander styling */
|
197 |
+
.streamlit-expanderHeader {
|
198 |
+
background: var(--card-background);
|
199 |
+
border-radius: 5px;
|
200 |
+
}
|
201 |
+
</style>
|
202 |
+
""",
|
203 |
+
unsafe_allow_html=True,
|
204 |
+
)
|
205 |
+
|
206 |
+
# API configuration - works for both local and Hugging Face deployment
|
207 |
+
api_key = os.environ.get("NEBIUS_API_KEY")
|
208 |
+
|
209 |
+
if not api_key:
|
210 |
+
st.markdown(
|
211 |
+
"""
|
212 |
+
<div class="error-card">
|
213 |
+
<h3>π API Key Configuration Required</h3>
|
214 |
+
|
215 |
+
<h4>For Local Development:</h4>
|
216 |
+
<ol>
|
217 |
+
<li>Open the <code>.env</code> file in your project directory</li>
|
218 |
+
<li>Replace <code>your_api_key_here</code> with your actual Nebius API key</li>
|
219 |
+
<li>Save the file and restart the application</li>
|
220 |
+
</ol>
|
221 |
+
<p><strong>Example .env file:</strong></p>
|
222 |
+
<pre>NEBIUS_API_KEY=your_actual_api_key_here</pre>
|
223 |
+
|
224 |
+
<h4>For Hugging Face Spaces Deployment:</h4>
|
225 |
+
<ol>
|
226 |
+
<li>Go to your Space settings</li>
|
227 |
+
<li>Navigate to the "Variables and secrets" section</li>
|
228 |
+
<li>Add a new secret: <code>NEBIUS_API_KEY</code> with your API key value</li>
|
229 |
+
<li>Restart your Space</li>
|
230 |
+
</ol>
|
231 |
+
|
232 |
+
<p><em>π‘ The app will automatically detect the environment and use the appropriate method.</em></p>
|
233 |
+
</div>
|
234 |
+
""",
|
235 |
+
unsafe_allow_html=True,
|
236 |
+
)
|
237 |
+
st.stop()
|
238 |
+
|
239 |
+
# Set the API key in environment for consistency
|
240 |
+
os.environ["OPENAI_API_KEY"] = api_key
|
241 |
+
|
242 |
+
# Nebius API settings
|
243 |
+
NEBIUS_API_URL = "https://api.studio.nebius.com/v1/chat/completions"
|
244 |
+
MODEL_NAME = "Qwen/Qwen3-30B-A3B"
|
245 |
+
|
246 |
+
|
247 |
+
# Function to call Nebius API
|
248 |
+
def call_nebius_api(messages, response_format=None, thinking_mode=False):
|
249 |
+
headers = {"Content-Type": "application/json", "Authorization": f"Bearer {api_key}"}
|
250 |
+
|
251 |
+
payload = {"model": MODEL_NAME, "messages": messages}
|
252 |
+
|
253 |
+
if response_format:
|
254 |
+
payload["response_format"] = response_format
|
255 |
+
|
256 |
+
# If in thinking mode, ask the model to show its reasoning
|
257 |
+
if thinking_mode:
|
258 |
+
# Add instruction to show thinking process
|
259 |
+
last_message = messages[-1]
|
260 |
+
enhanced_content = (
|
261 |
+
f"{last_message['content']}\n\n"
|
262 |
+
f"Important: First explain your thinking process step by step, "
|
263 |
+
f"then provide your final answer clearly labeled as 'FINAL ANSWER:'"
|
264 |
+
)
|
265 |
+
messages[-1]["content"] = enhanced_content
|
266 |
+
payload["messages"] = messages
|
267 |
+
|
268 |
+
try:
|
269 |
+
response = requests.post(NEBIUS_API_URL, headers=headers, json=payload)
|
270 |
+
response.raise_for_status()
|
271 |
+
return response.json()
|
272 |
+
except Exception as e:
|
273 |
+
st.error(f"API Error: {str(e)}")
|
274 |
+
if hasattr(e, "response") and hasattr(e.response, "text"):
|
275 |
+
st.error(f"Response: {e.response.text}")
|
276 |
+
return None
|
277 |
+
|
278 |
+
|
279 |
+
# Load Bitext dataset
|
280 |
+
@st.cache_data
|
281 |
+
def load_bitext_dataset():
|
282 |
+
try:
|
283 |
+
dataset = load_dataset(
|
284 |
+
"bitext/Bitext-customer-support-llm-chatbot-training-dataset"
|
285 |
+
)
|
286 |
+
df = pd.DataFrame(dataset["train"])
|
287 |
+
return df
|
288 |
+
except Exception as e:
|
289 |
+
st.error(f"Error loading dataset: {e}")
|
290 |
+
return None
|
291 |
+
|
292 |
+
|
293 |
+
# Define enums for request types
|
294 |
+
class AnalysisType(str, Enum):
|
295 |
+
QUANTITATIVE = "quantitative"
|
296 |
+
QUALITATIVE = "qualitative"
|
297 |
+
OUT_OF_SCOPE = "out_of_scope"
|
298 |
+
|
299 |
+
|
300 |
+
class ColumnType(str, Enum):
|
301 |
+
CATEGORY = "category"
|
302 |
+
INTENT = "intent"
|
303 |
+
CUSTOMER = "customer"
|
304 |
+
AGENT = "agent"
|
305 |
+
|
306 |
+
|
307 |
+
# Define schema for agent requests
|
308 |
+
class AgentRequest(BaseModel):
|
309 |
+
question: str = Field(..., description="The user's question")
|
310 |
+
analysis_type: AnalysisType = Field(..., description="Type of analysis to perform")
|
311 |
+
target_columns: Optional[List[ColumnType]] = Field(
|
312 |
+
None, description="Columns to analyze"
|
313 |
+
)
|
314 |
+
is_follow_up: bool = Field(
|
315 |
+
False, description="Whether this is a follow-up question"
|
316 |
+
)
|
317 |
+
previous_context: Optional[str] = Field(
|
318 |
+
None, description="Context from previous question"
|
319 |
+
)
|
320 |
+
|
321 |
+
|
322 |
+
# Function to classify the user question
|
323 |
+
def classify_question(
|
324 |
+
question: str, previous_context: Optional[str] = None
|
325 |
+
) -> AgentRequest:
|
326 |
+
"""
|
327 |
+
Use the LLM to classify the question and determine the analysis type and target columns.
|
328 |
+
"""
|
329 |
+
system_prompt = """
|
330 |
+
You are a data analyst assistant that classifies user questions about a customer support dataset.
|
331 |
+
The dataset contains customer support conversations with these columns:
|
332 |
+
- category: The category of the customer query
|
333 |
+
- intent: The specific intent of the customer query
|
334 |
+
- customer: The customer's message
|
335 |
+
- agent: The agent's response
|
336 |
+
|
337 |
+
Classify the question into one of these types:
|
338 |
+
- quantitative: Questions about statistics, frequencies, distributions, or examples of categories/intents
|
339 |
+
- qualitative: Questions asking for summaries or insights about specific categories/intents
|
340 |
+
- out_of_scope: Questions that cannot be answered using the dataset
|
341 |
+
|
342 |
+
Also identify which columns are relevant to the question.
|
343 |
+
|
344 |
+
Return a JSON object with the following fields:
|
345 |
+
{
|
346 |
+
"analysis_type": "quantitative" | "qualitative" | "out_of_scope",
|
347 |
+
"target_columns": ["category", "intent", "customer", "agent"]
|
348 |
+
}
|
349 |
+
"""
|
350 |
+
|
351 |
+
context_info = f"\nPrevious context: {previous_context}" if previous_context else ""
|
352 |
+
|
353 |
+
user_prompt = f"Classify this question: {question}{context_info}"
|
354 |
+
|
355 |
+
response = call_nebius_api(
|
356 |
+
[
|
357 |
+
{"role": "system", "content": system_prompt},
|
358 |
+
{"role": "user", "content": user_prompt},
|
359 |
+
],
|
360 |
+
response_format={"type": "json_object"},
|
361 |
+
)
|
362 |
+
|
363 |
+
if not response:
|
364 |
+
# Fallback if API call fails
|
365 |
+
return AgentRequest(
|
366 |
+
question=question,
|
367 |
+
analysis_type=AnalysisType.OUT_OF_SCOPE,
|
368 |
+
target_columns=[],
|
369 |
+
is_follow_up=bool(previous_context),
|
370 |
+
previous_context=previous_context,
|
371 |
+
)
|
372 |
+
|
373 |
+
try:
|
374 |
+
content = (
|
375 |
+
response.get("choices", [{}])[0].get("message", {}).get("content", "{}")
|
376 |
+
)
|
377 |
+
result = json.loads(content)
|
378 |
+
|
379 |
+
# Convert string column names to ColumnType enum values
|
380 |
+
target_columns = []
|
381 |
+
for col in result.get("target_columns", []):
|
382 |
+
try:
|
383 |
+
target_columns.append(ColumnType(col))
|
384 |
+
except ValueError:
|
385 |
+
pass # Skip invalid column types
|
386 |
+
|
387 |
+
return AgentRequest(
|
388 |
+
question=question,
|
389 |
+
analysis_type=AnalysisType(result.get("analysis_type", "out_of_scope")),
|
390 |
+
target_columns=target_columns,
|
391 |
+
is_follow_up=bool(previous_context),
|
392 |
+
previous_context=previous_context,
|
393 |
+
)
|
394 |
+
except (json.JSONDecodeError, ValueError) as e:
|
395 |
+
st.warning(f"Error parsing API response: {str(e)}")
|
396 |
+
return AgentRequest(
|
397 |
+
question=question,
|
398 |
+
analysis_type=AnalysisType.OUT_OF_SCOPE,
|
399 |
+
target_columns=[],
|
400 |
+
is_follow_up=bool(previous_context),
|
401 |
+
previous_context=previous_context,
|
402 |
+
)
|
403 |
+
|
404 |
+
|
405 |
+
# Function to generate a response to the user's question
|
406 |
+
def generate_response(df: pd.DataFrame, request: AgentRequest) -> str:
|
407 |
+
"""
|
408 |
+
Generate a response to the user's question based on the request classification.
|
409 |
+
"""
|
410 |
+
# Get thinking mode setting from session state
|
411 |
+
show_thinking = st.session_state.get("show_thinking", True)
|
412 |
+
|
413 |
+
if request.analysis_type == AnalysisType.OUT_OF_SCOPE:
|
414 |
+
return "I'm sorry, but I can't answer that question based on the available customer support data."
|
415 |
+
|
416 |
+
# Prepare context with dataset information
|
417 |
+
data_description = f"Dataset contains {len(df)} customer support conversations."
|
418 |
+
|
419 |
+
if request.analysis_type == AnalysisType.QUANTITATIVE:
|
420 |
+
# For quantitative questions, prepare relevant statistics
|
421 |
+
stats_context = ""
|
422 |
+
if ColumnType.CATEGORY in request.target_columns:
|
423 |
+
category_counts = df["category"].value_counts().to_dict()
|
424 |
+
stats_context += f"\nCategory distribution: {json.dumps(category_counts)}"
|
425 |
+
|
426 |
+
if ColumnType.INTENT in request.target_columns:
|
427 |
+
intent_counts = df["intent"].value_counts().to_dict()
|
428 |
+
stats_context += f"\nIntent distribution: {json.dumps(intent_counts)}"
|
429 |
+
|
430 |
+
# If specific examples are requested, include sample data
|
431 |
+
if "example" in request.question.lower() or "show" in request.question.lower():
|
432 |
+
for col in request.target_columns:
|
433 |
+
if col.value in df.columns:
|
434 |
+
# Try to extract a specific value the user might be looking for
|
435 |
+
search_terms = [term.lower() for term in df[col.value].unique()]
|
436 |
+
for term in search_terms:
|
437 |
+
if term in request.question.lower():
|
438 |
+
examples = (
|
439 |
+
df[df[col.value].str.lower() == term]
|
440 |
+
.head(5)
|
441 |
+
.to_dict("records")
|
442 |
+
)
|
443 |
+
stats_context += f"\nExamples of {col.value}='{term}': {json.dumps(examples)}"
|
444 |
+
break
|
445 |
+
else: # QUALITATIVE
|
446 |
+
stats_context = ""
|
447 |
+
# For qualitative questions, prepare relevant data for summarization
|
448 |
+
for col in request.target_columns:
|
449 |
+
if col.value in df.columns:
|
450 |
+
unique_values = df[col.value].unique().tolist()
|
451 |
+
stats_context += (
|
452 |
+
f"\nUnique values for {col.value}: {json.dumps(unique_values)}"
|
453 |
+
)
|
454 |
+
|
455 |
+
# If there's a specific category/intent mentioned in the question
|
456 |
+
for value in unique_values:
|
457 |
+
if value.lower() in request.question.lower():
|
458 |
+
filtered_data = (
|
459 |
+
df[df[col.value] == value].head(10).to_dict("records")
|
460 |
+
)
|
461 |
+
stats_context += f"\nSample data for {col.value}='{value}': {json.dumps(filtered_data)}"
|
462 |
+
break
|
463 |
+
|
464 |
+
# Generate the response using LLM
|
465 |
+
system_prompt = f"""
|
466 |
+
You are a data analyst assistant that answers questions about a customer support dataset.
|
467 |
+
{data_description}
|
468 |
+
|
469 |
+
Use the following context to answer the question:
|
470 |
+
{stats_context}
|
471 |
+
|
472 |
+
Be concise and data-driven in your response. Mention specific numbers and patterns when appropriate.
|
473 |
+
If there isn't enough information to fully answer the question, acknowledge that limitation.
|
474 |
+
"""
|
475 |
+
|
476 |
+
previous_context = ""
|
477 |
+
if request.is_follow_up:
|
478 |
+
previous_context = (
|
479 |
+
f"\nThis is a follow-up to previous context: {request.previous_context}"
|
480 |
+
)
|
481 |
+
|
482 |
+
response = call_nebius_api(
|
483 |
+
[
|
484 |
+
{"role": "system", "content": system_prompt},
|
485 |
+
{
|
486 |
+
"role": "user",
|
487 |
+
"content": f"Question: {request.question}{previous_context}",
|
488 |
+
},
|
489 |
+
],
|
490 |
+
thinking_mode=show_thinking,
|
491 |
+
)
|
492 |
+
|
493 |
+
if not response:
|
494 |
+
return "I'm sorry, I encountered an error while processing your question. Please try again."
|
495 |
+
|
496 |
+
return (
|
497 |
+
response.get("choices", [{}])[0]
|
498 |
+
.get("message", {})
|
499 |
+
.get("content", "I couldn't generate a response. Please try again.")
|
500 |
+
)
|
501 |
+
|
502 |
+
|
503 |
+
# Function to plan and execute approach based on mode
|
504 |
+
def process_question(
|
505 |
+
df: pd.DataFrame, question: str, mode: str, previous_context: Optional[str] = None
|
506 |
+
) -> str:
|
507 |
+
"""
|
508 |
+
Process the user question using the specified planning mode.
|
509 |
+
"""
|
510 |
+
# Add thinking indicator to the UI with custom styling
|
511 |
+
thinking_placeholder = st.empty()
|
512 |
+
thinking_placeholder.markdown(
|
513 |
+
"""
|
514 |
+
<div class="thinking-indicator">
|
515 |
+
<div class="info-card">
|
516 |
+
βοΈ <strong>Agent is thinking...</strong> Analyzing your question and preparing response.
|
517 |
+
</div>
|
518 |
+
</div>
|
519 |
+
""",
|
520 |
+
unsafe_allow_html=True,
|
521 |
+
)
|
522 |
+
|
523 |
+
# Get thinking mode setting from session state
|
524 |
+
show_thinking = st.session_state.get("show_thinking", True)
|
525 |
+
|
526 |
+
if mode == "pre_planning":
|
527 |
+
# Pre-planning: First classify, then execute
|
528 |
+
request = classify_question(question, previous_context)
|
529 |
+
st.session_state.last_request = request
|
530 |
+
|
531 |
+
# Show classification if thinking is enabled
|
532 |
+
if show_thinking:
|
533 |
+
thinking_placeholder.markdown(
|
534 |
+
f"""
|
535 |
+
<div class="info-card">
|
536 |
+
βοΈ <strong>Agent classified this as a
|
537 |
+
<span style="color: var(--primary-color);">{request.analysis_type}</span> question</strong>
|
538 |
+
<br>π Target columns: {[col.value for col in request.target_columns]}
|
539 |
+
</div>
|
540 |
+
""",
|
541 |
+
unsafe_allow_html=True,
|
542 |
+
)
|
543 |
+
|
544 |
+
result = generate_response(df, request)
|
545 |
+
else: # reactive_planning
|
546 |
+
# Reactive planning: Let the LLM decide approach dynamically
|
547 |
+
system_prompt = """
|
548 |
+
You are a data analyst assistant that answers questions about a customer support dataset.
|
549 |
+
The dataset contains customer support conversations with categories, intents, customer messages, and agent responses.
|
550 |
+
|
551 |
+
Analyze the question and determine how to approach it:
|
552 |
+
1. Identify if it's asking for statistics, examples, summaries, or insights
|
553 |
+
2. Determine which aspects of the data are relevant
|
554 |
+
3. Generate a direct and concise response based on the data
|
555 |
+
|
556 |
+
If the question cannot be answered with the customer support dataset, politely explain that it's outside your scope.
|
557 |
+
"""
|
558 |
+
|
559 |
+
# Prepare dataset information
|
560 |
+
data_description = f"Dataset with {len(df)} records. "
|
561 |
+
data_description += f"Sample of 5 records: {df.sample(5).to_dict('records')}"
|
562 |
+
data_description += f"\nColumns: {df.columns.tolist()}"
|
563 |
+
|
564 |
+
# Include full distributions for categories and intents
|
565 |
+
# Check if the question is about distributions or frequencies
|
566 |
+
question_lower = question.lower()
|
567 |
+
include_distributions = any(
|
568 |
+
term in question_lower
|
569 |
+
for term in [
|
570 |
+
"distribution",
|
571 |
+
"frequency",
|
572 |
+
"count",
|
573 |
+
"how many",
|
574 |
+
"most frequent",
|
575 |
+
"most common",
|
576 |
+
"statistics",
|
577 |
+
]
|
578 |
+
)
|
579 |
+
|
580 |
+
# Always include category values
|
581 |
+
data_description += f"\nCategory values: {df['category'].unique().tolist()}"
|
582 |
+
|
583 |
+
# Include full distribution data if the question appears to need it
|
584 |
+
if include_distributions:
|
585 |
+
if "category" in question_lower or "categories" in question_lower:
|
586 |
+
category_counts = df["category"].value_counts().to_dict()
|
587 |
+
data_description += (
|
588 |
+
f"\nCategory distribution: {json.dumps(category_counts)}"
|
589 |
+
)
|
590 |
+
|
591 |
+
if "intent" in question_lower or "intents" in question_lower:
|
592 |
+
intent_counts = df["intent"].value_counts().to_dict()
|
593 |
+
data_description += (
|
594 |
+
f"\nIntent distribution: {json.dumps(intent_counts)}"
|
595 |
+
)
|
596 |
+
else:
|
597 |
+
# Just provide a sample of intents if not specifically asking about them
|
598 |
+
data_description += f"\nIntent values sample: {df['intent'].sample(10).unique().tolist()}"
|
599 |
+
else:
|
600 |
+
# Just provide a sample of intents
|
601 |
+
data_description += (
|
602 |
+
f"\nIntent values sample: {df['intent'].sample(10).unique().tolist()}"
|
603 |
+
)
|
604 |
+
|
605 |
+
context_info = ""
|
606 |
+
if previous_context:
|
607 |
+
context_info = f"\nThis is a follow-up to: {previous_context}"
|
608 |
+
|
609 |
+
response = call_nebius_api(
|
610 |
+
[
|
611 |
+
{"role": "system", "content": system_prompt},
|
612 |
+
{
|
613 |
+
"role": "user",
|
614 |
+
"content": f"Question: {question}\n\nDataset information: {data_description}{context_info}",
|
615 |
+
},
|
616 |
+
],
|
617 |
+
thinking_mode=show_thinking,
|
618 |
+
)
|
619 |
+
|
620 |
+
if not response:
|
621 |
+
thinking_placeholder.empty()
|
622 |
+
return "I'm sorry, I encountered an error while processing your question. Please try again."
|
623 |
+
|
624 |
+
result = (
|
625 |
+
response.get("choices", [{}])[0]
|
626 |
+
.get("message", {})
|
627 |
+
.get("content", "I couldn't generate a response. Please try again.")
|
628 |
+
)
|
629 |
+
|
630 |
+
# Clear the thinking indicator
|
631 |
+
thinking_placeholder.empty()
|
632 |
+
|
633 |
+
# Process the result to separate thinking from final answer if needed
|
634 |
+
if show_thinking and "FINAL ANSWER:" in result:
|
635 |
+
parts = result.split("FINAL ANSWER:")
|
636 |
+
thinking = parts[0].strip()
|
637 |
+
final_answer = parts[1].strip()
|
638 |
+
|
639 |
+
# Display thinking and final answer with clear separation
|
640 |
+
with st.expander("π§ Agent's Thinking Process", expanded=True):
|
641 |
+
st.markdown(thinking)
|
642 |
+
|
643 |
+
return final_answer
|
644 |
+
else:
|
645 |
+
return result
|
646 |
+
|
647 |
+
|
648 |
+
# Main app interface
|
649 |
+
def main():
|
650 |
+
# Custom header
|
651 |
+
st.markdown(
|
652 |
+
"""
|
653 |
+
<div class="main-header">
|
654 |
+
<h1>π€ LLM-powered Data Analyst Agent</h1>
|
655 |
+
<p>Intelligent Analysis of Bitext Customer Support Dataset</p>
|
656 |
+
</div>
|
657 |
+
""",
|
658 |
+
unsafe_allow_html=True,
|
659 |
+
)
|
660 |
+
|
661 |
+
# Load dataset
|
662 |
+
with st.spinner("π Loading dataset..."):
|
663 |
+
df = load_bitext_dataset()
|
664 |
+
|
665 |
+
if df is None:
|
666 |
+
st.markdown(
|
667 |
+
"""
|
668 |
+
<div class="error-card">
|
669 |
+
<h3>β Dataset Loading Failed</h3>
|
670 |
+
<p>Failed to load dataset. Please check your internet connection and try again.</p>
|
671 |
+
</div>
|
672 |
+
""",
|
673 |
+
unsafe_allow_html=True,
|
674 |
+
)
|
675 |
+
return
|
676 |
+
|
677 |
+
# Success message with dataset info
|
678 |
+
st.markdown(
|
679 |
+
f"""
|
680 |
+
<div class="success-card">
|
681 |
+
<h3>β
Dataset Loaded Successfully</h3>
|
682 |
+
<p>Loaded <strong>{len(df):,}</strong> customer support records ready for analysis</p>
|
683 |
+
</div>
|
684 |
+
""",
|
685 |
+
unsafe_allow_html=True,
|
686 |
+
)
|
687 |
+
|
688 |
+
# Sidebar configuration
|
689 |
+
with st.sidebar:
|
690 |
+
st.markdown("## βοΈ Configuration")
|
691 |
+
|
692 |
+
# Planning mode selection with styling
|
693 |
+
st.markdown("### π§ Planning Mode")
|
694 |
+
planning_mode = st.radio(
|
695 |
+
"Select how the agent should approach questions:",
|
696 |
+
["pre_planning", "reactive_planning"],
|
697 |
+
format_func=lambda x: (
|
698 |
+
"π― Pre-planning + Execution"
|
699 |
+
if x == "pre_planning"
|
700 |
+
else "β‘ Reactive Dynamic Planning"
|
701 |
+
),
|
702 |
+
help="Choose between structured pre-analysis or dynamic reactive planning",
|
703 |
+
)
|
704 |
+
|
705 |
+
# Display current mode with badge
|
706 |
+
mode_class = (
|
707 |
+
"pre-planning" if planning_mode == "pre_planning" else "reactive-planning"
|
708 |
+
)
|
709 |
+
mode_name = (
|
710 |
+
"Pre-Planning" if planning_mode == "pre_planning" else "Reactive Planning"
|
711 |
+
)
|
712 |
+
st.markdown(
|
713 |
+
f"""
|
714 |
+
<div class="planning-badge {mode_class}">
|
715 |
+
{mode_name} Mode Active
|
716 |
+
</div>
|
717 |
+
""",
|
718 |
+
unsafe_allow_html=True,
|
719 |
+
)
|
720 |
+
|
721 |
+
st.markdown("---")
|
722 |
+
|
723 |
+
# Thinking process toggle
|
724 |
+
st.markdown("### π§ Agent Behavior")
|
725 |
+
if "show_thinking" not in st.session_state:
|
726 |
+
st.session_state.show_thinking = True
|
727 |
+
|
728 |
+
show_thinking = st.checkbox(
|
729 |
+
"π Show Agent's Thinking Process",
|
730 |
+
value=st.session_state.show_thinking,
|
731 |
+
help="Display the agent's reasoning and analysis steps",
|
732 |
+
)
|
733 |
+
st.session_state.show_thinking = show_thinking
|
734 |
+
|
735 |
+
st.markdown("---")
|
736 |
+
|
737 |
+
# Dataset stats in sidebar
|
738 |
+
st.markdown("### π Dataset Overview")
|
739 |
+
col1, col2 = st.columns(2)
|
740 |
+
with col1:
|
741 |
+
st.metric("π Total Records", f"{len(df):,}")
|
742 |
+
with col2:
|
743 |
+
st.metric("π Categories", len(df["category"].unique()))
|
744 |
+
|
745 |
+
st.metric("π― Unique Intents", len(df["intent"].unique()))
|
746 |
+
|
747 |
+
# Main content area
|
748 |
+
# Dataset information in an expandable section
|
749 |
+
with st.expander("π Dataset Information", expanded=False):
|
750 |
+
st.markdown("### Dataset Details")
|
751 |
+
|
752 |
+
# Create metrics row
|
753 |
+
metrics_col1, metrics_col2, metrics_col3, metrics_col4 = st.columns(4)
|
754 |
+
with metrics_col1:
|
755 |
+
st.metric("Total Records", f"{len(df):,}")
|
756 |
+
with metrics_col2:
|
757 |
+
st.metric("Columns", len(df.columns))
|
758 |
+
with metrics_col3:
|
759 |
+
st.metric("Categories", len(df["category"].unique()))
|
760 |
+
with metrics_col4:
|
761 |
+
st.metric("Intents", len(df["intent"].unique()))
|
762 |
+
|
763 |
+
st.markdown("### Sample Data")
|
764 |
+
st.dataframe(df.head(), use_container_width=True)
|
765 |
+
|
766 |
+
st.markdown("### Category Distribution")
|
767 |
+
st.bar_chart(df["category"].value_counts())
|
768 |
+
|
769 |
+
# Initialize session state for conversation history
|
770 |
+
if "conversation" not in st.session_state:
|
771 |
+
st.session_state.conversation = []
|
772 |
+
|
773 |
+
if "last_request" not in st.session_state:
|
774 |
+
st.session_state.last_request = None
|
775 |
+
|
776 |
+
# User input section
|
777 |
+
st.markdown("## π¬ Ask Your Question")
|
778 |
+
|
779 |
+
# Create a more prominent input area
|
780 |
+
user_question = st.text_input(
|
781 |
+
"What would you like to know about the customer support data?",
|
782 |
+
placeholder="e.g., What are the most common customer issues?",
|
783 |
+
key="user_input",
|
784 |
+
help="Ask questions about statistics, examples, or insights from the dataset",
|
785 |
+
)
|
786 |
+
|
787 |
+
# Submit button with custom styling
|
788 |
+
col1, col2, col3 = st.columns([1, 2, 1])
|
789 |
+
with col2:
|
790 |
+
submit_clicked = st.button("π Analyze Question", use_container_width=True)
|
791 |
+
|
792 |
+
if submit_clicked and user_question:
|
793 |
+
# Add user question to conversation
|
794 |
+
st.session_state.conversation.append({"role": "user", "content": user_question})
|
795 |
+
|
796 |
+
# Get previous context if this might be a follow-up
|
797 |
+
previous_context = None
|
798 |
+
if len(st.session_state.conversation) > 2:
|
799 |
+
# Get the previous assistant response
|
800 |
+
previous_context = st.session_state.conversation[-3]["content"]
|
801 |
+
|
802 |
+
# Process the question with enhanced loading indicator
|
803 |
+
with st.spinner("π€ Agent is analyzing your question..."):
|
804 |
+
response = process_question(
|
805 |
+
df, user_question, planning_mode, previous_context
|
806 |
+
)
|
807 |
+
|
808 |
+
# Add response to conversation
|
809 |
+
st.session_state.conversation.append({"role": "assistant", "content": response})
|
810 |
+
|
811 |
+
# Display conversation with styled messages
|
812 |
+
if st.session_state.conversation:
|
813 |
+
st.markdown("## π Conversation History")
|
814 |
+
|
815 |
+
for i, message in enumerate(st.session_state.conversation):
|
816 |
+
if message["role"] == "user":
|
817 |
+
st.markdown(
|
818 |
+
f"""
|
819 |
+
<div class="user-message">
|
820 |
+
<strong>π€ You:</strong> {message['content']}
|
821 |
+
</div>
|
822 |
+
""",
|
823 |
+
unsafe_allow_html=True,
|
824 |
+
)
|
825 |
+
else:
|
826 |
+
st.markdown(
|
827 |
+
f"""
|
828 |
+
<div class="assistant-message">
|
829 |
+
<strong>π€ Agent:</strong> {message['content']}
|
830 |
+
</div>
|
831 |
+
""",
|
832 |
+
unsafe_allow_html=True,
|
833 |
+
)
|
834 |
+
|
835 |
+
if i < len(st.session_state.conversation) - 1: # Not the last message
|
836 |
+
st.markdown("---")
|
837 |
+
|
838 |
+
# Clear conversation button
|
839 |
+
if st.button("ποΈ Clear Conversation"):
|
840 |
+
st.session_state.conversation = []
|
841 |
+
st.rerun()
|
842 |
+
|
843 |
+
|
844 |
+
if __name__ == "__main__":
|
845 |
+
main()
|
requirements.txt
CHANGED
@@ -1,3 +1,7 @@
|
|
1 |
-
|
2 |
-
pandas
|
3 |
-
|
|
|
|
|
|
|
|
|
|
1 |
+
streamlit==1.32.0
|
2 |
+
pandas==2.1.3
|
3 |
+
datasets==2.17.0
|
4 |
+
openai==1.12.0
|
5 |
+
pydantic==2.5.2
|
6 |
+
python-dotenv==1.0.0
|
7 |
+
requests==2.31.0
|