Spaces:
Sleeping
Sleeping
pip install selenium | |
import time | |
import random | |
import re | |
from datetime import datetime | |
import pandas as pd | |
from selenium import webdriver | |
from selenium.webdriver.common.by import By | |
from selenium.webdriver.chrome.options import Options | |
from selenium.webdriver.chrome.service import Service | |
from selenium.webdriver.support.ui import WebDriverWait | |
from selenium.webdriver.support import expected_conditions as EC | |
import gradio as gr | |
def scrape_amazon(search_term, pincode, num_pages=5): | |
options = Options() | |
options.add_argument('--headless') | |
options.add_argument('--disable-blink-features=AutomationControlled') | |
options.add_argument('--disable-gpu') | |
options.add_argument('--no-sandbox') | |
driver = webdriver.Chrome(service=Service(), options=options) | |
all_products = [] | |
seen_titles = set() | |
for page in range(1, num_pages + 1): | |
url = f"https://www.amazon.in/s?k={search_term}&page={page}&crid=2M096C61O4MLT&sprefix={search_term},aps,283" | |
driver.get(url) | |
time.sleep(random.uniform(3, 5)) # Let page load | |
# Scroll down to load dynamic content | |
driver.execute_script("window.scrollTo(0, document.body.scrollHeight);") | |
time.sleep(random.uniform(2, 4)) | |
products = driver.find_elements(By.XPATH, "//div[@data-component-type='s-search-result']") | |
print(f"Scraping page {page}, found {len(products)} products...") | |
for product in products: | |
try: | |
title_elem = product.find_element(By.XPATH, ".//h2//span") | |
title = title_elem.text.strip() | |
except: | |
title = "No Title" | |
if title in seen_titles: | |
continue | |
seen_titles.add(title) | |
# Link Extraction | |
try: | |
link_elem = product.find_element(By.XPATH, ".//a[@class='a-link-normal s-no-outline']") | |
link = link_elem.get_attribute('href') | |
if link and link.startswith("/"): | |
link = "https://www.amazon.com" + link | |
except: | |
link = "No Link" | |
# Selling Price Extraction | |
try: | |
price_elem = product.find_element(By.XPATH, ".//span[@class='a-price-whole']") | |
selling_price = (price_elem.text).replace(',', '').strip() | |
except: | |
try: | |
price_elem = product.find_element(By.XPATH, ".//span[@class='a-offscreen']") | |
selling_price = price_elem.text.replace('₹', '').replace(',', '').strip() | |
except: | |
selling_price = "No Price" | |
try: | |
mrp_elem = product.find_element(By.XPATH, ".//span[@class='a-price a-text-price']//span[@class='a-offscreen']") | |
mrp = mrp_elem.text.replace('₹', '').replace(',', '').strip() | |
except: | |
mrp = selling_price | |
# Discount Extraction | |
try: | |
if selling_price != "No Price" and mrp != "No Price": | |
discount_percent = round(100 * (float(mrp) - float(selling_price)) / float(mrp), 2) | |
else: | |
discount_percent = 0.0 | |
except: | |
discount_percent = 0.0 | |
# Grammage Extraction | |
try: | |
grammage_match = re.search(r'(\d+\.?\d*\s?(ml|g|kg|l))', title.lower()) | |
grammage = grammage_match.group(0) if grammage_match else "No Grammage" | |
except: | |
grammage = "No Grammage" | |
# Deal Tags Extraction | |
try: | |
badge = product.find_element(By.XPATH, ".//div[contains(@class, 'a-color-secondary')]//span[contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), 'deal') or contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), 'coupon') or contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), 'save') or contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), 'limited')]") | |
deal_tag = badge.text.strip() | |
except: | |
deal_tag = "No Deal" | |
# Quantity Bought Extraction | |
try: | |
qty = product.find_element(By.XPATH, ".//span[contains(text(),'bought in past month')]").text.strip() | |
except: | |
qty = "No data" | |
# Rating Extraction | |
try: | |
rating_elem = product.find_element(By.XPATH, ".//span[contains(@aria-label,'out of 5 stars')]") | |
rating = rating_elem.get_attribute("aria-label").split()[0] | |
except: | |
rating = "No Rating" | |
# Reviews Extraction | |
try: | |
reviews = product.find_element(By.XPATH, ".//a[contains(@aria-label,'ratings')]/span").text.strip() | |
except: | |
reviews = "No Reviews" | |
# Ad / Not Ad Detection | |
try: | |
ad_elem = product.find_element(By.XPATH, ".//span[contains(@class, 'puis-sponsored-label-text') and contains(text(), 'Sponsored')]") | |
ad_status = "Ad" | |
except: | |
ad_status = "Not Ad" | |
# Compile product info | |
product_data = { | |
'Title': title, | |
'Grammage': grammage, | |
'Selling Price': selling_price, | |
'MRP': mrp, | |
'Discount %': discount_percent, | |
'Deal Tags': deal_tag, | |
'Quantity Bought': qty, | |
'Rating': rating, | |
'Reviews': reviews, | |
'Link': link, | |
'Ad/Not Ad': ad_status, | |
'Date': datetime.now().strftime("%d-%m-%Y"), | |
'Search Term': search_term, | |
'Pincode': pincode, | |
'Category': search_term, | |
} | |
all_products.append(product_data) | |
time.sleep(random.uniform(2, 4)) # Pause between pages | |
driver.quit() | |
# Create DataFrame | |
df = pd.DataFrame(all_products) | |
# Save outputs | |
today_date = datetime.now().strftime("%Y-%m-%d") | |
filename_base = f"{search_term}scrape{today_date}" | |
excel_path = f"{filename_base}.xlsx" | |
csv_path = f"{filename_base}.csv" | |
json_path = f"{filename_base}.json" | |
df.to_excel(excel_path, index=False) | |
df.to_csv(csv_path, index=False) | |
df.to_json(json_path, orient="records", lines=True) | |
return excel_path, csv_path, json_path | |
def scrape_and_return_files(product_name, pincode, num_pages): | |
excel_path, csv_path, json_path = scrape_amazon(product_name, pincode, int(num_pages)) | |
return excel_path, csv_path, json_path | |
with gr.Blocks() as demo: | |
gr.Markdown("## 🛒 Amazon Scraper") | |
with gr.Row(): | |
product_name = gr.Textbox(label="Product Name", placeholder="e.g., atta") | |
pincode = gr.Textbox(label="Pincode", placeholder="e.g., 400076") | |
num_pages = gr.Number(label="Number of Pages", value=2) | |
scrape_button = gr.Button("Scrape Amazon!") | |
output_excel = gr.File(label="Download Excel (.xlsx)") | |
output_csv = gr.File(label="Download CSV (.csv)") | |
output_json = gr.File(label="Download JSON (.json)") | |
scrape_button.click( | |
scrape_and_return_files, | |
inputs=[product_name, pincode, num_pages], | |
outputs=[output_excel, output_csv, output_json] | |
) | |
demo.launch(share=True) | |