Sameercodes's picture
Update app.py
887d6e4 verified
raw
history blame
7.49 kB
pip install selenium
import time
import random
import re
from datetime import datetime
import pandas as pd
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
import gradio as gr
def scrape_amazon(search_term, pincode, num_pages=5):
options = Options()
options.add_argument('--headless')
options.add_argument('--disable-blink-features=AutomationControlled')
options.add_argument('--disable-gpu')
options.add_argument('--no-sandbox')
driver = webdriver.Chrome(service=Service(), options=options)
all_products = []
seen_titles = set()
for page in range(1, num_pages + 1):
url = f"https://www.amazon.in/s?k={search_term}&page={page}&crid=2M096C61O4MLT&sprefix={search_term},aps,283"
driver.get(url)
time.sleep(random.uniform(3, 5)) # Let page load
# Scroll down to load dynamic content
driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
time.sleep(random.uniform(2, 4))
products = driver.find_elements(By.XPATH, "//div[@data-component-type='s-search-result']")
print(f"Scraping page {page}, found {len(products)} products...")
for product in products:
try:
title_elem = product.find_element(By.XPATH, ".//h2//span")
title = title_elem.text.strip()
except:
title = "No Title"
if title in seen_titles:
continue
seen_titles.add(title)
# Link Extraction
try:
link_elem = product.find_element(By.XPATH, ".//a[@class='a-link-normal s-no-outline']")
link = link_elem.get_attribute('href')
if link and link.startswith("/"):
link = "https://www.amazon.com" + link
except:
link = "No Link"
# Selling Price Extraction
try:
price_elem = product.find_element(By.XPATH, ".//span[@class='a-price-whole']")
selling_price = (price_elem.text).replace(',', '').strip()
except:
try:
price_elem = product.find_element(By.XPATH, ".//span[@class='a-offscreen']")
selling_price = price_elem.text.replace('₹', '').replace(',', '').strip()
except:
selling_price = "No Price"
try:
mrp_elem = product.find_element(By.XPATH, ".//span[@class='a-price a-text-price']//span[@class='a-offscreen']")
mrp = mrp_elem.text.replace('₹', '').replace(',', '').strip()
except:
mrp = selling_price
# Discount Extraction
try:
if selling_price != "No Price" and mrp != "No Price":
discount_percent = round(100 * (float(mrp) - float(selling_price)) / float(mrp), 2)
else:
discount_percent = 0.0
except:
discount_percent = 0.0
# Grammage Extraction
try:
grammage_match = re.search(r'(\d+\.?\d*\s?(ml|g|kg|l))', title.lower())
grammage = grammage_match.group(0) if grammage_match else "No Grammage"
except:
grammage = "No Grammage"
# Deal Tags Extraction
try:
badge = product.find_element(By.XPATH, ".//div[contains(@class, 'a-color-secondary')]//span[contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), 'deal') or contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), 'coupon') or contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), 'save') or contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), 'limited')]")
deal_tag = badge.text.strip()
except:
deal_tag = "No Deal"
# Quantity Bought Extraction
try:
qty = product.find_element(By.XPATH, ".//span[contains(text(),'bought in past month')]").text.strip()
except:
qty = "No data"
# Rating Extraction
try:
rating_elem = product.find_element(By.XPATH, ".//span[contains(@aria-label,'out of 5 stars')]")
rating = rating_elem.get_attribute("aria-label").split()[0]
except:
rating = "No Rating"
# Reviews Extraction
try:
reviews = product.find_element(By.XPATH, ".//a[contains(@aria-label,'ratings')]/span").text.strip()
except:
reviews = "No Reviews"
# Ad / Not Ad Detection
try:
ad_elem = product.find_element(By.XPATH, ".//span[contains(@class, 'puis-sponsored-label-text') and contains(text(), 'Sponsored')]")
ad_status = "Ad"
except:
ad_status = "Not Ad"
# Compile product info
product_data = {
'Title': title,
'Grammage': grammage,
'Selling Price': selling_price,
'MRP': mrp,
'Discount %': discount_percent,
'Deal Tags': deal_tag,
'Quantity Bought': qty,
'Rating': rating,
'Reviews': reviews,
'Link': link,
'Ad/Not Ad': ad_status,
'Date': datetime.now().strftime("%d-%m-%Y"),
'Search Term': search_term,
'Pincode': pincode,
'Category': search_term,
}
all_products.append(product_data)
time.sleep(random.uniform(2, 4)) # Pause between pages
driver.quit()
# Create DataFrame
df = pd.DataFrame(all_products)
# Save outputs
today_date = datetime.now().strftime("%Y-%m-%d")
filename_base = f"{search_term}scrape{today_date}"
excel_path = f"{filename_base}.xlsx"
csv_path = f"{filename_base}.csv"
json_path = f"{filename_base}.json"
df.to_excel(excel_path, index=False)
df.to_csv(csv_path, index=False)
df.to_json(json_path, orient="records", lines=True)
return excel_path, csv_path, json_path
def scrape_and_return_files(product_name, pincode, num_pages):
excel_path, csv_path, json_path = scrape_amazon(product_name, pincode, int(num_pages))
return excel_path, csv_path, json_path
with gr.Blocks() as demo:
gr.Markdown("## 🛒 Amazon Scraper")
with gr.Row():
product_name = gr.Textbox(label="Product Name", placeholder="e.g., atta")
pincode = gr.Textbox(label="Pincode", placeholder="e.g., 400076")
num_pages = gr.Number(label="Number of Pages", value=2)
scrape_button = gr.Button("Scrape Amazon!")
output_excel = gr.File(label="Download Excel (.xlsx)")
output_csv = gr.File(label="Download CSV (.csv)")
output_json = gr.File(label="Download JSON (.json)")
scrape_button.click(
scrape_and_return_files,
inputs=[product_name, pincode, num_pages],
outputs=[output_excel, output_csv, output_json]
)
demo.launch(share=True)