File size: 7,487 Bytes
887d6e4
02d6bfc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
pip install selenium
import time
import random
import re
from datetime import datetime
import pandas as pd
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.chrome.service import Service
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
import gradio as gr

def scrape_amazon(search_term, pincode, num_pages=5):
    options = Options()
    options.add_argument('--headless')
    options.add_argument('--disable-blink-features=AutomationControlled')
    options.add_argument('--disable-gpu')
    options.add_argument('--no-sandbox')

    driver = webdriver.Chrome(service=Service(), options=options)

    all_products = []
    seen_titles = set()

    for page in range(1, num_pages + 1):
        url = f"https://www.amazon.in/s?k={search_term}&page={page}&crid=2M096C61O4MLT&sprefix={search_term},aps,283"
        driver.get(url)

        time.sleep(random.uniform(3, 5))  # Let page load

        # Scroll down to load dynamic content
        driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
        time.sleep(random.uniform(2, 4))

        products = driver.find_elements(By.XPATH, "//div[@data-component-type='s-search-result']")
        print(f"Scraping page {page}, found {len(products)} products...")

        for product in products:

            try:
                title_elem = product.find_element(By.XPATH, ".//h2//span")
                title = title_elem.text.strip()
            except:
                title = "No Title"

            if title in seen_titles:
                continue
            seen_titles.add(title)

            # Link Extraction
            try:
                link_elem = product.find_element(By.XPATH, ".//a[@class='a-link-normal s-no-outline']")
                link = link_elem.get_attribute('href')
                if link and link.startswith("/"):
                    link = "https://www.amazon.com" + link
            except:
                link = "No Link"

            # Selling Price Extraction
            try:
                price_elem = product.find_element(By.XPATH, ".//span[@class='a-price-whole']")
                selling_price = (price_elem.text).replace(',', '').strip()
            except:
                try:
                    price_elem = product.find_element(By.XPATH, ".//span[@class='a-offscreen']")
                    selling_price = price_elem.text.replace('₹', '').replace(',', '').strip()
                except:
                    selling_price = "No Price"

            try:
                mrp_elem = product.find_element(By.XPATH, ".//span[@class='a-price a-text-price']//span[@class='a-offscreen']")
                mrp = mrp_elem.text.replace('₹', '').replace(',', '').strip()

            except:
                mrp = selling_price

            # Discount Extraction
            try:
                if selling_price != "No Price" and mrp != "No Price":
                    discount_percent = round(100 * (float(mrp) - float(selling_price)) / float(mrp), 2)
                else:
                    discount_percent = 0.0
            except:
                discount_percent = 0.0

            # Grammage Extraction
            try:
                grammage_match = re.search(r'(\d+\.?\d*\s?(ml|g|kg|l))', title.lower())
                grammage = grammage_match.group(0) if grammage_match else "No Grammage"
            except:
                grammage = "No Grammage"

            # Deal Tags Extraction
            try:
                badge = product.find_element(By.XPATH, ".//div[contains(@class, 'a-color-secondary')]//span[contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), 'deal') or contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), 'coupon') or contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), 'save') or contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), 'limited')]")
                deal_tag = badge.text.strip()
            except:
                deal_tag = "No Deal"

            # Quantity Bought Extraction
            try:
                qty = product.find_element(By.XPATH, ".//span[contains(text(),'bought in past month')]").text.strip()
            except:
                qty = "No data"

            # Rating Extraction
            try:
                rating_elem = product.find_element(By.XPATH, ".//span[contains(@aria-label,'out of 5 stars')]")
                rating = rating_elem.get_attribute("aria-label").split()[0]
            except:
                rating = "No Rating"

            # Reviews Extraction
            try:
                reviews = product.find_element(By.XPATH, ".//a[contains(@aria-label,'ratings')]/span").text.strip()
            except:
                reviews = "No Reviews"

            # Ad / Not Ad Detection
            try:
                ad_elem = product.find_element(By.XPATH, ".//span[contains(@class, 'puis-sponsored-label-text') and contains(text(), 'Sponsored')]")
                ad_status = "Ad"
            except:
                ad_status = "Not Ad"

            # Compile product info
            product_data = {
                'Title': title,
                'Grammage': grammage,
                'Selling Price': selling_price,
                'MRP': mrp,
                'Discount %': discount_percent,
                'Deal Tags': deal_tag,
                'Quantity Bought': qty,
                'Rating': rating,
                'Reviews': reviews,
                'Link': link,
                'Ad/Not Ad': ad_status,
                'Date': datetime.now().strftime("%d-%m-%Y"),
                'Search Term': search_term,
                'Pincode': pincode,
                'Category': search_term,
            }

            all_products.append(product_data)

        time.sleep(random.uniform(2, 4))  # Pause between pages

    driver.quit()

    # Create DataFrame
    df = pd.DataFrame(all_products)

    # Save outputs
    today_date = datetime.now().strftime("%Y-%m-%d")
    filename_base = f"{search_term}scrape{today_date}"

    excel_path = f"{filename_base}.xlsx"
    csv_path = f"{filename_base}.csv"
    json_path = f"{filename_base}.json"

    df.to_excel(excel_path, index=False)
    df.to_csv(csv_path, index=False)
    df.to_json(json_path, orient="records", lines=True)

    return excel_path, csv_path, json_path


def scrape_and_return_files(product_name, pincode, num_pages):
    excel_path, csv_path, json_path = scrape_amazon(product_name, pincode, int(num_pages))
    return excel_path, csv_path, json_path


with gr.Blocks() as demo:
    gr.Markdown("## 🛒 Amazon Scraper")
    
    with gr.Row():
        product_name = gr.Textbox(label="Product Name", placeholder="e.g., atta")
        pincode = gr.Textbox(label="Pincode", placeholder="e.g., 400076")
        num_pages = gr.Number(label="Number of Pages", value=2)

    scrape_button = gr.Button("Scrape Amazon!")

    output_excel = gr.File(label="Download Excel (.xlsx)")
    output_csv = gr.File(label="Download CSV (.csv)")
    output_json = gr.File(label="Download JSON (.json)")

    scrape_button.click(
        scrape_and_return_files,
        inputs=[product_name, pincode, num_pages],
        outputs=[output_excel, output_csv, output_json]
    )

demo.launch(share=True)