Spaces:
Sleeping
Sleeping
File size: 6,837 Bytes
40e4db0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 |
import time
import random
import re
from datetime import datetime
import pandas as pd
import gradio as gr
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.chrome.service import Service
def scrape_amazon(search_term, pincode, num_pages=5):
options = Options()
options.add_argument('--headless')
options.add_argument('--disable-blink-features=AutomationControlled')
options.add_argument('--disable-gpu')
options.add_argument('--no-sandbox')
driver = webdriver.Chrome(service=Service(), options=options)
all_products = []
seen_titles = set()
for page in range(1, num_pages + 1):
url = f"https://www.amazon.in/s?k={search_term}&page={page}&crid=2M096C61O4MLT&sprefix={search_term},aps,283"
driver.get(url)
time.sleep(random.uniform(3, 5)) # Let page load
# Scroll down to load dynamic content
driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
time.sleep(random.uniform(2, 4))
products = driver.find_elements(By.XPATH, "//div[@data-component-type='s-search-result']")
print(f"Scraping page {page}, found {len(products)} products...")
for product in products:
try:
title_elem = product.find_element(By.XPATH, ".//h2//span")
title = title_elem.text.strip()
except:
title = "No Title"
if title in seen_titles:
continue
seen_titles.add(title)
try:
link_elem = product.find_element(By.XPATH, ".//a[@class='a-link-normal s-no-outline']")
link = link_elem.get_attribute('href')
except:
link = "No Link"
try:
price_elem = product.find_element(By.XPATH, ".//span[@class='a-price-whole']")
selling_price = price_elem.text.replace(',', '').strip()
except:
try:
price_elem = product.find_element(By.XPATH, ".//span[@class='a-offscreen']")
selling_price = price_elem.text.replace('₹', '').replace(',', '').strip()
except:
selling_price = "No Price"
try:
mrp_elem = product.find_element(By.XPATH, ".//span[@class='a-price a-text-price' and @data-a-strike='true']//span[@class='a-offscreen']")
raw_price = mrp_elem.get_attribute("textContent")
mrp = raw_price.replace('₹', '').replace(',', '').strip()
except:
mrp = "No Price"
try:
if selling_price != "No Price" and mrp != "No Price":
discount_percent = round(100 * (float(mrp) - float(selling_price)) / float(mrp), 2)
else:
discount_percent = 0.0
except:
discount_percent = 0.0
try:
grammage_match = re.search(r'(\d+\.?\d*\s?(ml|g|kg|l))', title.lower())
grammage = grammage_match.group(0) if grammage_match else "No Grammage"
except:
grammage = "No Grammage"
try:
badge = product.find_element(By.XPATH, ".//div[contains(@class, 'a-color-secondary')]//span[contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), 'deal') or contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), 'coupon') or contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), 'save') or contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), 'limited')]")
deal_tag = badge.text.strip()
except:
deal_tag = "No Deal"
try:
qty = product.find_element(By.XPATH, ".//span[contains(text(),'bought in past month')]").text.strip()
except:
qty = "No data"
try:
rating_elem = product.find_element(By.XPATH, ".//span[@class='a-icon-alt']")
rating = rating_elem.get_attribute("textContent").split()[0]
except:
rating = "No Rating"
try:
reviews = product.find_element(By.XPATH, ".//a[contains(@aria-label,'ratings')]/span").text.strip()
except:
reviews = "No Reviews"
try:
ad_elem = product.find_element(By.XPATH, ".//span[contains(@class, 'a-color-secondary') and contains(text(), 'Sponsored')]")
ad_status = "Ad"
except:
ad_status = "Not Ad"
product_data = {
'Title': title,
'Grammage': grammage,
'Selling Price': selling_price,
'MRP': mrp,
'Discount %': discount_percent,
'Deal Tags': deal_tag,
'Quantity Bought': qty,
'Rating': rating,
'Reviews': reviews,
'Link': link,
'Ad/Not Ad': ad_status,
'Date': datetime.now().strftime("%d-%m-%Y"),
'Search Term': search_term,
'Pincode': pincode,
'Category': search_term,
}
all_products.append(product_data)
time.sleep(random.uniform(2, 4)) # Pause between pages
driver.quit()
df = pd.DataFrame(all_products)
today_date = datetime.now().strftime("%Y-%m-%d")
filename_base = f"{search_term}_scrape_{today_date}"
excel_path = f"{filename_base}.xlsx"
csv_path = f"{filename_base}.csv"
json_path = f"{filename_base}.json"
df.to_excel(excel_path, index=False)
df.to_csv(csv_path, index=False)
df.to_json(json_path, orient="records", lines=True)
return excel_path, csv_path, json_path, df
### Now the Gradio interface
def gradio_interface(search_term, pincode, num_pages):
excel_path, csv_path, json_path, df = scrape_amazon(search_term, pincode, int(num_pages))
return df, excel_path, csv_path, json_path
# Gradio App
app = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Textbox(label="Search Term"),
gr.Textbox(label="Pincode"),
gr.Slider(minimum=1, maximum=10, step=1, value=2, label="Number of Pages to Scrape")
],
outputs=[
gr.Dataframe(label="Scraped Data"),
gr.File(label="Excel File"),
gr.File(label="CSV File"),
gr.File(label="JSON File"),
],
title="🛒 Amazon.in Product Scraper",
description="Enter a search term, pincode, and number of pages. Download the results as Excel/CSV/JSON.",
)
if __name__ == "__main__":
app.launch(share=True)
|