File size: 6,837 Bytes
40e4db0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import time
import random
import re
from datetime import datetime
import pandas as pd
import gradio as gr
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.chrome.options import Options
from selenium.webdriver.chrome.service import Service

def scrape_amazon(search_term, pincode, num_pages=5):
    options = Options()
    options.add_argument('--headless')
    options.add_argument('--disable-blink-features=AutomationControlled')
    options.add_argument('--disable-gpu')
    options.add_argument('--no-sandbox')

    driver = webdriver.Chrome(service=Service(), options=options)

    all_products = []
    seen_titles = set()

    for page in range(1, num_pages + 1):
        url = f"https://www.amazon.in/s?k={search_term}&page={page}&crid=2M096C61O4MLT&sprefix={search_term},aps,283"
        driver.get(url)

        time.sleep(random.uniform(3, 5))  # Let page load

        # Scroll down to load dynamic content
        driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
        time.sleep(random.uniform(2, 4))

        products = driver.find_elements(By.XPATH, "//div[@data-component-type='s-search-result']")
        print(f"Scraping page {page}, found {len(products)} products...")

        for product in products:
            try:
                title_elem = product.find_element(By.XPATH, ".//h2//span")
                title = title_elem.text.strip()
            except:
                title = "No Title"

            if title in seen_titles:
                continue
            seen_titles.add(title)

            try:
                link_elem = product.find_element(By.XPATH, ".//a[@class='a-link-normal s-no-outline']")
                link = link_elem.get_attribute('href')
            except:
                link = "No Link"

            try:
                price_elem = product.find_element(By.XPATH, ".//span[@class='a-price-whole']")
                selling_price = price_elem.text.replace(',', '').strip()
            except:
                try:
                    price_elem = product.find_element(By.XPATH, ".//span[@class='a-offscreen']")
                    selling_price = price_elem.text.replace('₹', '').replace(',', '').strip()
                except:
                    selling_price = "No Price"

            try:
                mrp_elem = product.find_element(By.XPATH, ".//span[@class='a-price a-text-price' and @data-a-strike='true']//span[@class='a-offscreen']")
                raw_price = mrp_elem.get_attribute("textContent")
                mrp = raw_price.replace('₹', '').replace(',', '').strip()
            except:
                mrp = "No Price"

            try:
                if selling_price != "No Price" and mrp != "No Price":
                    discount_percent = round(100 * (float(mrp) - float(selling_price)) / float(mrp), 2)
                else:
                    discount_percent = 0.0
            except:
                discount_percent = 0.0

            try:
                grammage_match = re.search(r'(\d+\.?\d*\s?(ml|g|kg|l))', title.lower())
                grammage = grammage_match.group(0) if grammage_match else "No Grammage"
            except:
                grammage = "No Grammage"

            try:
                badge = product.find_element(By.XPATH, ".//div[contains(@class, 'a-color-secondary')]//span[contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), 'deal') or contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), 'coupon') or contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), 'save') or contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), 'limited')]")
                deal_tag = badge.text.strip()
            except:
                deal_tag = "No Deal"

            try:
                qty = product.find_element(By.XPATH, ".//span[contains(text(),'bought in past month')]").text.strip()
            except:
                qty = "No data"

            try:
                rating_elem = product.find_element(By.XPATH, ".//span[@class='a-icon-alt']")
                rating = rating_elem.get_attribute("textContent").split()[0]
            except:
                rating = "No Rating"

            try:
                reviews = product.find_element(By.XPATH, ".//a[contains(@aria-label,'ratings')]/span").text.strip()
            except:
                reviews = "No Reviews"

            try:
                ad_elem = product.find_element(By.XPATH, ".//span[contains(@class, 'a-color-secondary') and contains(text(), 'Sponsored')]")
                ad_status = "Ad"
            except:
                ad_status = "Not Ad"

            product_data = {
                'Title': title,
                'Grammage': grammage,
                'Selling Price': selling_price,
                'MRP': mrp,
                'Discount %': discount_percent,
                'Deal Tags': deal_tag,
                'Quantity Bought': qty,
                'Rating': rating,
                'Reviews': reviews,
                'Link': link,
                'Ad/Not Ad': ad_status,
                'Date': datetime.now().strftime("%d-%m-%Y"),
                'Search Term': search_term,
                'Pincode': pincode,
                'Category': search_term,
            }

            all_products.append(product_data)

        time.sleep(random.uniform(2, 4))  # Pause between pages

    driver.quit()

    df = pd.DataFrame(all_products)

    today_date = datetime.now().strftime("%Y-%m-%d")
    filename_base = f"{search_term}_scrape_{today_date}"

    excel_path = f"{filename_base}.xlsx"
    csv_path = f"{filename_base}.csv"
    json_path = f"{filename_base}.json"

    df.to_excel(excel_path, index=False)
    df.to_csv(csv_path, index=False)
    df.to_json(json_path, orient="records", lines=True)

    return excel_path, csv_path, json_path, df

### Now the Gradio interface

def gradio_interface(search_term, pincode, num_pages):
    excel_path, csv_path, json_path, df = scrape_amazon(search_term, pincode, int(num_pages))
    return df, excel_path, csv_path, json_path

# Gradio App
app = gr.Interface(
    fn=gradio_interface,
    inputs=[
        gr.Textbox(label="Search Term"),
        gr.Textbox(label="Pincode"),
        gr.Slider(minimum=1, maximum=10, step=1, value=2, label="Number of Pages to Scrape")
    ],
    outputs=[
        gr.Dataframe(label="Scraped Data"),
        gr.File(label="Excel File"),
        gr.File(label="CSV File"),
        gr.File(label="JSON File"),
    ],
    title="🛒 Amazon.in Product Scraper",
    description="Enter a search term, pincode, and number of pages. Download the results as Excel/CSV/JSON.",
)

if __name__ == "__main__":
    app.launch(share=True)