Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import random
|
3 |
+
import re
|
4 |
+
from datetime import datetime
|
5 |
+
import pandas as pd
|
6 |
+
import gradio as gr
|
7 |
+
from selenium import webdriver
|
8 |
+
from selenium.webdriver.common.by import By
|
9 |
+
from selenium.webdriver.chrome.options import Options
|
10 |
+
from selenium.webdriver.chrome.service import Service
|
11 |
+
|
12 |
+
def scrape_amazon(search_term, pincode, num_pages=5):
|
13 |
+
options = Options()
|
14 |
+
options.add_argument('--headless')
|
15 |
+
options.add_argument('--disable-blink-features=AutomationControlled')
|
16 |
+
options.add_argument('--disable-gpu')
|
17 |
+
options.add_argument('--no-sandbox')
|
18 |
+
|
19 |
+
driver = webdriver.Chrome(service=Service(), options=options)
|
20 |
+
|
21 |
+
all_products = []
|
22 |
+
seen_titles = set()
|
23 |
+
|
24 |
+
for page in range(1, num_pages + 1):
|
25 |
+
url = f"https://www.amazon.in/s?k={search_term}&page={page}&crid=2M096C61O4MLT&sprefix={search_term},aps,283"
|
26 |
+
driver.get(url)
|
27 |
+
|
28 |
+
time.sleep(random.uniform(3, 5)) # Let page load
|
29 |
+
|
30 |
+
# Scroll down to load dynamic content
|
31 |
+
driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
|
32 |
+
time.sleep(random.uniform(2, 4))
|
33 |
+
|
34 |
+
products = driver.find_elements(By.XPATH, "//div[@data-component-type='s-search-result']")
|
35 |
+
print(f"Scraping page {page}, found {len(products)} products...")
|
36 |
+
|
37 |
+
for product in products:
|
38 |
+
try:
|
39 |
+
title_elem = product.find_element(By.XPATH, ".//h2//span")
|
40 |
+
title = title_elem.text.strip()
|
41 |
+
except:
|
42 |
+
title = "No Title"
|
43 |
+
|
44 |
+
if title in seen_titles:
|
45 |
+
continue
|
46 |
+
seen_titles.add(title)
|
47 |
+
|
48 |
+
try:
|
49 |
+
link_elem = product.find_element(By.XPATH, ".//a[@class='a-link-normal s-no-outline']")
|
50 |
+
link = link_elem.get_attribute('href')
|
51 |
+
except:
|
52 |
+
link = "No Link"
|
53 |
+
|
54 |
+
try:
|
55 |
+
price_elem = product.find_element(By.XPATH, ".//span[@class='a-price-whole']")
|
56 |
+
selling_price = price_elem.text.replace(',', '').strip()
|
57 |
+
except:
|
58 |
+
try:
|
59 |
+
price_elem = product.find_element(By.XPATH, ".//span[@class='a-offscreen']")
|
60 |
+
selling_price = price_elem.text.replace('₹', '').replace(',', '').strip()
|
61 |
+
except:
|
62 |
+
selling_price = "No Price"
|
63 |
+
|
64 |
+
try:
|
65 |
+
mrp_elem = product.find_element(By.XPATH, ".//span[@class='a-price a-text-price' and @data-a-strike='true']//span[@class='a-offscreen']")
|
66 |
+
raw_price = mrp_elem.get_attribute("textContent")
|
67 |
+
mrp = raw_price.replace('₹', '').replace(',', '').strip()
|
68 |
+
except:
|
69 |
+
mrp = "No Price"
|
70 |
+
|
71 |
+
try:
|
72 |
+
if selling_price != "No Price" and mrp != "No Price":
|
73 |
+
discount_percent = round(100 * (float(mrp) - float(selling_price)) / float(mrp), 2)
|
74 |
+
else:
|
75 |
+
discount_percent = 0.0
|
76 |
+
except:
|
77 |
+
discount_percent = 0.0
|
78 |
+
|
79 |
+
try:
|
80 |
+
grammage_match = re.search(r'(\d+\.?\d*\s?(ml|g|kg|l))', title.lower())
|
81 |
+
grammage = grammage_match.group(0) if grammage_match else "No Grammage"
|
82 |
+
except:
|
83 |
+
grammage = "No Grammage"
|
84 |
+
|
85 |
+
try:
|
86 |
+
badge = product.find_element(By.XPATH, ".//div[contains(@class, 'a-color-secondary')]//span[contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), 'deal') or contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), 'coupon') or contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), 'save') or contains(translate(text(), 'ABCDEFGHIJKLMNOPQRSTUVWXYZ', 'abcdefghijklmnopqrstuvwxyz'), 'limited')]")
|
87 |
+
deal_tag = badge.text.strip()
|
88 |
+
except:
|
89 |
+
deal_tag = "No Deal"
|
90 |
+
|
91 |
+
try:
|
92 |
+
qty = product.find_element(By.XPATH, ".//span[contains(text(),'bought in past month')]").text.strip()
|
93 |
+
except:
|
94 |
+
qty = "No data"
|
95 |
+
|
96 |
+
try:
|
97 |
+
rating_elem = product.find_element(By.XPATH, ".//span[@class='a-icon-alt']")
|
98 |
+
rating = rating_elem.get_attribute("textContent").split()[0]
|
99 |
+
except:
|
100 |
+
rating = "No Rating"
|
101 |
+
|
102 |
+
try:
|
103 |
+
reviews = product.find_element(By.XPATH, ".//a[contains(@aria-label,'ratings')]/span").text.strip()
|
104 |
+
except:
|
105 |
+
reviews = "No Reviews"
|
106 |
+
|
107 |
+
try:
|
108 |
+
ad_elem = product.find_element(By.XPATH, ".//span[contains(@class, 'a-color-secondary') and contains(text(), 'Sponsored')]")
|
109 |
+
ad_status = "Ad"
|
110 |
+
except:
|
111 |
+
ad_status = "Not Ad"
|
112 |
+
|
113 |
+
product_data = {
|
114 |
+
'Title': title,
|
115 |
+
'Grammage': grammage,
|
116 |
+
'Selling Price': selling_price,
|
117 |
+
'MRP': mrp,
|
118 |
+
'Discount %': discount_percent,
|
119 |
+
'Deal Tags': deal_tag,
|
120 |
+
'Quantity Bought': qty,
|
121 |
+
'Rating': rating,
|
122 |
+
'Reviews': reviews,
|
123 |
+
'Link': link,
|
124 |
+
'Ad/Not Ad': ad_status,
|
125 |
+
'Date': datetime.now().strftime("%d-%m-%Y"),
|
126 |
+
'Search Term': search_term,
|
127 |
+
'Pincode': pincode,
|
128 |
+
'Category': search_term,
|
129 |
+
}
|
130 |
+
|
131 |
+
all_products.append(product_data)
|
132 |
+
|
133 |
+
time.sleep(random.uniform(2, 4)) # Pause between pages
|
134 |
+
|
135 |
+
driver.quit()
|
136 |
+
|
137 |
+
df = pd.DataFrame(all_products)
|
138 |
+
|
139 |
+
today_date = datetime.now().strftime("%Y-%m-%d")
|
140 |
+
filename_base = f"{search_term}_scrape_{today_date}"
|
141 |
+
|
142 |
+
excel_path = f"{filename_base}.xlsx"
|
143 |
+
csv_path = f"{filename_base}.csv"
|
144 |
+
json_path = f"{filename_base}.json"
|
145 |
+
|
146 |
+
df.to_excel(excel_path, index=False)
|
147 |
+
df.to_csv(csv_path, index=False)
|
148 |
+
df.to_json(json_path, orient="records", lines=True)
|
149 |
+
|
150 |
+
return excel_path, csv_path, json_path, df
|
151 |
+
|
152 |
+
### Now the Gradio interface
|
153 |
+
|
154 |
+
def gradio_interface(search_term, pincode, num_pages):
|
155 |
+
excel_path, csv_path, json_path, df = scrape_amazon(search_term, pincode, int(num_pages))
|
156 |
+
return df, excel_path, csv_path, json_path
|
157 |
+
|
158 |
+
# Gradio App
|
159 |
+
app = gr.Interface(
|
160 |
+
fn=gradio_interface,
|
161 |
+
inputs=[
|
162 |
+
gr.Textbox(label="Search Term"),
|
163 |
+
gr.Textbox(label="Pincode"),
|
164 |
+
gr.Slider(minimum=1, maximum=10, step=1, value=2, label="Number of Pages to Scrape")
|
165 |
+
],
|
166 |
+
outputs=[
|
167 |
+
gr.Dataframe(label="Scraped Data"),
|
168 |
+
gr.File(label="Excel File"),
|
169 |
+
gr.File(label="CSV File"),
|
170 |
+
gr.File(label="JSON File"),
|
171 |
+
],
|
172 |
+
title="🛒 Amazon.in Product Scraper",
|
173 |
+
description="Enter a search term, pincode, and number of pages. Download the results as Excel/CSV/JSON.",
|
174 |
+
)
|
175 |
+
|
176 |
+
if __name__ == "__main__":
|
177 |
+
app.launch(share=True)
|