Sambhavnoobcoder commited on
Commit
2e71df7
·
1 Parent(s): 21a1937
Files changed (1) hide show
  1. app.py +33 -1
app.py CHANGED
@@ -1,3 +1,35 @@
1
  import gradio as gr
 
 
2
 
3
- gr.Interface.load("sentimentality.h5").launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
+ import tensorflow as tf
3
+ import numpy as np
4
 
5
+ # Load the pre-trained model
6
+ model = tf.keras.models.load_model('sentimentality.h5')
7
+
8
+ # Define a function to preprocess the text input
9
+ def preprocess(text):
10
+ tokenizer = tf.keras.preprocessing.text.Tokenizer()
11
+ tokenizer.fit_on_texts([text])
12
+ text = tokenizer.texts_to_sequences([text])
13
+ text = tf.keras.preprocessing.sequence.pad_sequences(text, maxlen=500, padding='post', truncating='post')
14
+ return text
15
+
16
+ # Define a function to make a prediction on the input text
17
+ def predict_sentiment(text):
18
+ # Preprocess the text
19
+ text = preprocess(text)
20
+ # Make a prediction using the loaded model
21
+ proba = model.predict(text)[0]
22
+ # Normalize the probabilities
23
+ proba /= proba.sum()
24
+ # Return the probability distribution
25
+ return {"Positive": float(proba[0]), "Negative": float(proba[1]), "Neutral": float(proba[2])}
26
+
27
+ # Create a Gradio interface
28
+ iface = gr.Interface(
29
+ fn=predict_sentiment,
30
+ inputs=gr.inputs.Textbox(label="Enter text here"),
31
+ outputs=gr.outputs.Label(label="Sentiment", default="Neutral")
32
+ )
33
+
34
+ # Launch the interface
35
+ iface.launch()