Commit
·
21a1937
1
Parent(s):
f3335c0
direct uthaya
Browse files
app.py
CHANGED
@@ -1,33 +1,3 @@
|
|
1 |
import gradio as gr
|
2 |
-
import tensorflow as tf
|
3 |
|
4 |
-
|
5 |
-
model = tf.keras.models.load_model('sentimentality.h5')
|
6 |
-
|
7 |
-
# Define a function to make a prediction on the input text
|
8 |
-
def predict_sentiment(text):
|
9 |
-
# Preprocess the text
|
10 |
-
tokenizer = tf.keras.preprocessing.text.Tokenizer()
|
11 |
-
tokenizer.fit_on_texts([text])
|
12 |
-
text = tokenizer.texts_to_sequences([text])
|
13 |
-
text = tf.keras.preprocessing.sequence.pad_sequences(text, maxlen=500, padding='post', truncating='post')
|
14 |
-
# Make a prediction using the loaded model
|
15 |
-
proba = model.predict(text)[0]
|
16 |
-
# Normalize the probabilities
|
17 |
-
proba /= proba.sum()
|
18 |
-
# Return the probability distribution
|
19 |
-
return {"Positive": float(proba[0]), "Negative": float(proba[1]), "Neutral": float(proba[2])}
|
20 |
-
|
21 |
-
# Create a Gradio interface
|
22 |
-
iface = gr.Interface(
|
23 |
-
fn=predict_sentiment,
|
24 |
-
inputs=gr.inputs.Textbox(label="Enter text here", lines=5, placeholder="Type here to analyze sentiment..."),
|
25 |
-
outputs=gr.outputs.Label(label="Sentiment", default="Neutral", font_size=30)
|
26 |
-
)
|
27 |
-
|
28 |
-
# Add the possible classes to the output plot
|
29 |
-
classes = ["Positive", "Negative", "Neutral"]
|
30 |
-
iface.outputs[0].choices = classes
|
31 |
-
|
32 |
-
# Launch the interface
|
33 |
-
iface.launch()
|
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
+
gr.Interface.load("sentimentality.h5").launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|