Commit
·
f3335c0
1
Parent(s):
d278b23
fn8
Browse files
app.py
CHANGED
@@ -1,14 +1,5 @@
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
3 |
-
import numpy as np
|
4 |
-
|
5 |
-
# Define a function to preprocess the text input
|
6 |
-
def preprocess(text):
|
7 |
-
tokenizer = tf.keras.preprocessing.text.Tokenizer()
|
8 |
-
tokenizer.fit_on_texts([text])
|
9 |
-
text = tokenizer.texts_to_sequences([text])
|
10 |
-
text = tf.keras.preprocessing.sequence.pad_sequences(text, maxlen=500, padding='post', truncating='post')
|
11 |
-
return text
|
12 |
|
13 |
# Load the pre-trained model
|
14 |
model = tf.keras.models.load_model('sentimentality.h5')
|
@@ -16,33 +7,27 @@ model = tf.keras.models.load_model('sentimentality.h5')
|
|
16 |
# Define a function to make a prediction on the input text
|
17 |
def predict_sentiment(text):
|
18 |
# Preprocess the text
|
19 |
-
|
|
|
|
|
|
|
20 |
# Make a prediction using the loaded model
|
21 |
proba = model.predict(text)[0]
|
22 |
# Normalize the probabilities
|
23 |
proba /= proba.sum()
|
24 |
-
#
|
25 |
-
|
26 |
-
# Determine the color based on the sentiment label
|
27 |
-
if sentiment_label == 'Positive':
|
28 |
-
color = '#2a9d8f'
|
29 |
-
elif sentiment_label == 'Negative':
|
30 |
-
color = '#e76f51'
|
31 |
-
else:
|
32 |
-
color = '#264653'
|
33 |
-
# Return the sentiment label and color
|
34 |
-
return {'label': sentiment_label, 'color': color}
|
35 |
|
36 |
-
#
|
37 |
iface = gr.Interface(
|
38 |
fn=predict_sentiment,
|
39 |
-
inputs=gr.inputs.Textbox(label=
|
40 |
-
outputs=gr.outputs.Label(label=
|
41 |
-
font_size=30, font_family='Arial',
|
42 |
-
background_color='#f8f8f8',
|
43 |
-
color='black'),
|
44 |
-
title='SENTIMENT ANALYSIS'
|
45 |
)
|
46 |
|
|
|
|
|
|
|
|
|
47 |
# Launch the interface
|
48 |
iface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import tensorflow as tf
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
# Load the pre-trained model
|
5 |
model = tf.keras.models.load_model('sentimentality.h5')
|
|
|
7 |
# Define a function to make a prediction on the input text
|
8 |
def predict_sentiment(text):
|
9 |
# Preprocess the text
|
10 |
+
tokenizer = tf.keras.preprocessing.text.Tokenizer()
|
11 |
+
tokenizer.fit_on_texts([text])
|
12 |
+
text = tokenizer.texts_to_sequences([text])
|
13 |
+
text = tf.keras.preprocessing.sequence.pad_sequences(text, maxlen=500, padding='post', truncating='post')
|
14 |
# Make a prediction using the loaded model
|
15 |
proba = model.predict(text)[0]
|
16 |
# Normalize the probabilities
|
17 |
proba /= proba.sum()
|
18 |
+
# Return the probability distribution
|
19 |
+
return {"Positive": float(proba[0]), "Negative": float(proba[1]), "Neutral": float(proba[2])}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
|
21 |
+
# Create a Gradio interface
|
22 |
iface = gr.Interface(
|
23 |
fn=predict_sentiment,
|
24 |
+
inputs=gr.inputs.Textbox(label="Enter text here", lines=5, placeholder="Type here to analyze sentiment..."),
|
25 |
+
outputs=gr.outputs.Label(label="Sentiment", default="Neutral", font_size=30)
|
|
|
|
|
|
|
|
|
26 |
)
|
27 |
|
28 |
+
# Add the possible classes to the output plot
|
29 |
+
classes = ["Positive", "Negative", "Neutral"]
|
30 |
+
iface.outputs[0].choices = classes
|
31 |
+
|
32 |
# Launch the interface
|
33 |
iface.launch()
|