Sambhavnoobcoder commited on
Commit
f3335c0
·
1 Parent(s): d278b23
Files changed (1) hide show
  1. app.py +13 -28
app.py CHANGED
@@ -1,14 +1,5 @@
1
  import gradio as gr
2
  import tensorflow as tf
3
- import numpy as np
4
-
5
- # Define a function to preprocess the text input
6
- def preprocess(text):
7
- tokenizer = tf.keras.preprocessing.text.Tokenizer()
8
- tokenizer.fit_on_texts([text])
9
- text = tokenizer.texts_to_sequences([text])
10
- text = tf.keras.preprocessing.sequence.pad_sequences(text, maxlen=500, padding='post', truncating='post')
11
- return text
12
 
13
  # Load the pre-trained model
14
  model = tf.keras.models.load_model('sentimentality.h5')
@@ -16,33 +7,27 @@ model = tf.keras.models.load_model('sentimentality.h5')
16
  # Define a function to make a prediction on the input text
17
  def predict_sentiment(text):
18
  # Preprocess the text
19
- text = preprocess(text)
 
 
 
20
  # Make a prediction using the loaded model
21
  proba = model.predict(text)[0]
22
  # Normalize the probabilities
23
  proba /= proba.sum()
24
- # Get the predicted sentiment label
25
- sentiment_label = ['Positive', 'Negative', 'Neutral'][np.argmax(proba)]
26
- # Determine the color based on the sentiment label
27
- if sentiment_label == 'Positive':
28
- color = '#2a9d8f'
29
- elif sentiment_label == 'Negative':
30
- color = '#e76f51'
31
- else:
32
- color = '#264653'
33
- # Return the sentiment label and color
34
- return {'label': sentiment_label, 'color': color}
35
 
36
- # Define the Gradio interface
37
  iface = gr.Interface(
38
  fn=predict_sentiment,
39
- inputs=gr.inputs.Textbox(label='Enter text here'),
40
- outputs=gr.outputs.Label(label='Sentiment', value='Neutral',
41
- font_size=30, font_family='Arial',
42
- background_color='#f8f8f8',
43
- color='black'),
44
- title='SENTIMENT ANALYSIS'
45
  )
46
 
 
 
 
 
47
  # Launch the interface
48
  iface.launch()
 
1
  import gradio as gr
2
  import tensorflow as tf
 
 
 
 
 
 
 
 
 
3
 
4
  # Load the pre-trained model
5
  model = tf.keras.models.load_model('sentimentality.h5')
 
7
  # Define a function to make a prediction on the input text
8
  def predict_sentiment(text):
9
  # Preprocess the text
10
+ tokenizer = tf.keras.preprocessing.text.Tokenizer()
11
+ tokenizer.fit_on_texts([text])
12
+ text = tokenizer.texts_to_sequences([text])
13
+ text = tf.keras.preprocessing.sequence.pad_sequences(text, maxlen=500, padding='post', truncating='post')
14
  # Make a prediction using the loaded model
15
  proba = model.predict(text)[0]
16
  # Normalize the probabilities
17
  proba /= proba.sum()
18
+ # Return the probability distribution
19
+ return {"Positive": float(proba[0]), "Negative": float(proba[1]), "Neutral": float(proba[2])}
 
 
 
 
 
 
 
 
 
20
 
21
+ # Create a Gradio interface
22
  iface = gr.Interface(
23
  fn=predict_sentiment,
24
+ inputs=gr.inputs.Textbox(label="Enter text here", lines=5, placeholder="Type here to analyze sentiment..."),
25
+ outputs=gr.outputs.Label(label="Sentiment", default="Neutral", font_size=30)
 
 
 
 
26
  )
27
 
28
+ # Add the possible classes to the output plot
29
+ classes = ["Positive", "Negative", "Neutral"]
30
+ iface.outputs[0].choices = classes
31
+
32
  # Launch the interface
33
  iface.launch()