Rivalcoder
Add Files
4168c5d
raw
history blame
5.46 kB
import cv2
import torch
import numpy as np
from PIL import Image
import torchvision.transforms as transforms
from ultralytics import YOLO
import tempfile
import time
import os
import json
import gradio as gr
from fastapi import FastAPI, UploadFile, File, HTTPException
import uvicorn
# Initialize FastAPI
app = FastAPI()
# Global variable for face detections
largest_face_detections = []
# Load models
yolo_model_path = "yolov8n-face.pt"
emotion_model_path = "best_emotion_model.pth"
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# Check if models exist
if os.path.exists(yolo_model_path):
yolo_model = YOLO(yolo_model_path)
else:
raise FileNotFoundError(f"YOLO model not found at {yolo_model_path}")
if os.path.exists(emotion_model_path):
from torch import nn
class EmotionCNN(nn.Module):
def __init__(self, num_classes=7):
super(EmotionCNN, self).__init__()
self.conv1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=3, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2))
self.fc = nn.Sequential(nn.Linear(64 * 24 * 24, 1024),
nn.ReLU(),
nn.Linear(1024, num_classes))
def forward(self, x):
x = self.conv1(x)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
emotion_model = EmotionCNN(num_classes=7)
checkpoint = torch.load(emotion_model_path, map_location=device)
emotion_model.load_state_dict(checkpoint['model_state_dict'])
emotion_model.to(device)
emotion_model.eval()
else:
raise FileNotFoundError(f"Emotion model not found at {emotion_model_path}")
# Emotion labels
emotions = ['Angry', 'Disgust', 'Fear', 'Happy', 'Sad', 'Surprise', 'Neutral']
def preprocess_face(face_img):
"""Preprocess face image for emotion detection"""
transform = transforms.Compose([
transforms.Resize((48, 48)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5], std=[0.5])
])
face_img = Image.fromarray(cv2.cvtColor(face_img, cv2.COLOR_BGR2RGB)).convert('L')
face_tensor = transform(face_img).unsqueeze(0)
return face_tensor
def process_video(video_path: str):
"""Process video and return emotion results"""
global largest_face_detections
largest_face_detections = []
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return {"success": False, "message": "Could not open video file"}
while True:
ret, frame = cap.read()
if not ret:
break
largest_face_area = 0
current_detection = None
results = yolo_model(frame, stream=True)
for result in results:
boxes = result.boxes
for box in boxes:
x1, y1, x2, y2 = map(int, box.xyxy[0].cpu().numpy())
face_img = frame[y1:y2, x1:x2]
if face_img.size == 0:
continue
face_tensor = preprocess_face(face_img).to(device)
with torch.no_grad():
output = emotion_model(face_tensor)
probabilities = torch.nn.functional.softmax(output, dim=1)
emotion_idx = torch.argmax(output, dim=1).item()
confidence = probabilities[0][emotion_idx].item()
emotion = emotions[emotion_idx]
if (x2 - x1) * (y2 - y1) > largest_face_area:
largest_face_area = (x2 - x1) * (y2 - y1)
current_detection = {"emotion": emotion, "confidence": confidence}
if current_detection:
largest_face_detections.append(current_detection)
cap.release()
if not largest_face_detections:
return {"success": True, "message": "No faces detected", "results": []}
return {
"success": True,
"message": "Video processed",
"results": largest_face_detections
}
@app.post("/api/video")
async def handle_video(file: UploadFile = File(...)):
"""API endpoint for video emotion detection"""
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp:
tmp.write(await file.read())
video_path = tmp.name
result = process_video(video_path)
os.remove(video_path)
return result
except Exception as e:
return {"success": False, "message": "Error processing video", "error": str(e)}
# Gradio UI
def gradio_process(video):
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp4") as tmp:
tmp.write(video)
video_path = tmp.name
result = process_video(video_path)
os.remove(video_path)
return result
with gr.Blocks() as demo:
gr.Markdown("# Video Emotion Analysis")
with gr.Row():
with gr.Column():
video_input = gr.File(label="Upload a video", file_types=[".mp4"])
submit_btn = gr.Button("Analyze")
with gr.Column():
output = gr.JSON(label="Results")
submit_btn.click(fn=gradio_process, inputs=video_input, outputs=output)
app = gr.mount_gradio_app(app, demo, path="/")
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=7860)