Spaces:
Running
Running
File size: 10,962 Bytes
ec96972 eb87b3b 0589d55 011118e eb87b3b 862446b 011118e 402c718 ec96972 e15840d ec96972 402c718 ec96972 0d10b91 eb87b3b ec96972 eb87b3b ec96972 862446b ec96972 862446b 011118e 402c718 011118e 402c718 bd67de7 402c718 bd67de7 402c718 ec96972 eb87b3b ec96972 0589d55 862446b 0589d55 862446b ec96972 862446b bd67de7 011118e bd67de7 eb87b3b ec96972 402c718 bd67de7 862446b bd67de7 402c718 862446b 011118e eb87b3b 862446b eb87b3b 862446b 6bc8549 862446b 6bc8549 862446b ec96972 862446b ec96972 eb87b3b ec96972 862446b eb87b3b ec96972 862446b eb87b3b ec96972 862446b eb87b3b ec96972 862446b ec96972 862446b eb87b3b 862446b eb87b3b 862446b 011118e eb87b3b 862446b eb87b3b 862446b 6bc8549 862446b 6bc8549 862446b ec96972 862446b ec96972 011118e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 |
import os
import warnings
import logging
import time
import json
import hashlib
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor
from threading import Lock
import re
# Set up cache directory for HuggingFace models
cache_dir = os.path.join(os.getcwd(), ".cache")
os.makedirs(cache_dir, exist_ok=True)
os.environ['HF_HOME'] = cache_dir
os.environ['TRANSFORMERS_CACHE'] = cache_dir
# Suppress TensorFlow warnings
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
os.environ['TF_LOGGING_LEVEL'] = 'ERROR'
os.environ['TF_ENABLE_DEPRECATION_WARNINGS'] = '0'
warnings.filterwarnings('ignore', category=DeprecationWarning, module='tensorflow')
logging.getLogger('tensorflow').setLevel(logging.ERROR)
from fastapi import FastAPI, HTTPException, Depends, Header, Query
from fastapi.middleware.cors import CORSMiddleware
from pydantic import BaseModel
from pdf_parser import parse_pdf_from_url_multithreaded as parse_pdf_from_url, parse_pdf_from_file_multithreaded as parse_pdf_from_file
from embedder import build_faiss_index, preload_model
from retriever import retrieve_chunks
from llm import query_gemini
import uvicorn
app = FastAPI(title="HackRx Insurance Policy Assistant", version="1.0.0")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.on_event("startup")
async def startup_event():
print("Starting up HackRx Insurance Policy Assistant...")
print("Preloading sentence transformer model...")
preload_model()
print("Model preloading completed. API is ready to serve requests!")
@app.get("/")
async def root():
return {"message": "HackRx Insurance Policy Assistant API is running!"}
@app.get("/health")
async def health_check():
return {"status": "healthy"}
class QueryRequest(BaseModel):
documents: str
questions: list[str]
class LocalQueryRequest(BaseModel):
document_path: str
questions: list[str]
def verify_token(authorization: str = Header(None)):
if not authorization or not authorization.startswith("Bearer "):
raise HTTPException(status_code=401, detail="Invalid authorization header")
token = authorization.replace("Bearer ", "")
if not token:
raise HTTPException(status_code=401, detail="Invalid token")
return token
def process_batch(batch_questions, context_chunks):
return query_gemini(batch_questions, context_chunks)
def get_document_id_from_url(url: str) -> str:
return hashlib.md5(url.encode()).hexdigest()
def question_has_https_link(q: str) -> bool:
return bool(re.search(r"https://[^\s]+", q))
# Document cache with thread safety
doc_cache = {}
doc_cache_lock = Lock()
# ----------------- CACHE CLEAR ENDPOINT -----------------
@app.delete("/api/v1/cache/clear")
async def clear_cache(doc_id: str = Query(None, description="Optional document ID to clear"),
url: str = Query(None, description="Optional document URL to clear"),
doc_only: bool = Query(False, description="If true, only clear document cache")):
"""
Clear cache data.
- No params: Clears ALL caches.
- doc_id: Clears caches for that document only.
- url: Same as doc_id but computed automatically from URL.
- doc_only: Clears only document cache.
"""
cleared = {}
# If URL is provided, convert to doc_id
if url:
doc_id = get_document_id_from_url(url)
if doc_id:
if not doc_only:
with doc_cache_lock:
if doc_id in doc_cache:
del doc_cache[doc_id]
cleared["doc_cache"] = f"Cleared document {doc_id}"
else:
if not doc_only:
with doc_cache_lock:
doc_cache.clear()
cleared["doc_cache"] = "Cleared ALL documents"
return {"status": "success", "cleared": cleared}
@app.post("/api/v1/hackrx/run")
async def run_query(request: QueryRequest, token: str = Depends(verify_token)):
start_time = time.time()
timing_data = {}
try:
print("=== INPUT JSON ===")
print(json.dumps({"documents": request.documents, "questions": request.questions}, indent=2))
print("==================\n")
print(f"Processing {len(request.questions)} questions...")
# PDF Parsing and FAISS Caching (keep document caching for speed)
doc_id = get_document_id_from_url(request.documents)
with doc_cache_lock:
if doc_id in doc_cache:
print("✅ Using cached document...")
cached = doc_cache[doc_id]
text_chunks = cached["chunks"]
index = cached["index"]
texts = cached["texts"]
else:
print("⚙️ Parsing and indexing new document...")
pdf_start = time.time()
text_chunks = parse_pdf_from_url(request.documents)
timing_data['pdf_parsing'] = round(time.time() - pdf_start, 2)
index_start = time.time()
index, texts = build_faiss_index(text_chunks)
timing_data['faiss_index_building'] = round(time.time() - index_start, 2)
doc_cache[doc_id] = {
"chunks": text_chunks,
"index": index,
"texts": texts
}
# Retrieve chunks for all questions — no QA caching
retrieval_start = time.time()
all_chunks = set()
question_positions = {}
for idx, question in enumerate(request.questions):
top_chunks = retrieve_chunks(index, texts, question)
all_chunks.update(top_chunks)
question_positions.setdefault(question, []).append(idx)
timing_data['chunk_retrieval'] = round(time.time() - retrieval_start, 2)
print(f"Retrieved {len(all_chunks)} unique chunks for all questions")
# Query Gemini LLM fresh for all questions
context_chunks = list(all_chunks)
batch_size = 10
batches = [(i, request.questions[i:i + batch_size]) for i in range(0, len(request.questions), batch_size)]
llm_start = time.time()
results_dict = {}
with ThreadPoolExecutor(max_workers=min(5, len(batches))) as executor:
futures = [executor.submit(process_batch, batch, context_chunks) for _, batch in batches]
for (start_idx, batch), future in zip(batches, futures):
try:
result = future.result()
if isinstance(result, dict) and "answers" in result:
for j, answer in enumerate(result["answers"]):
results_dict[start_idx + j] = answer
else:
for j in range(len(batch)):
results_dict[start_idx + j] = "Error in response"
except Exception as e:
for j in range(len(batch)):
results_dict[start_idx + j] = f"Error: {str(e)}"
timing_data['llm_processing'] = round(time.time() - llm_start, 2)
responses = [results_dict.get(i, "Not Found") for i in range(len(request.questions))]
timing_data['total_time'] = round(time.time() - start_time, 2)
print(f"\n=== TIMING BREAKDOWN ===")
for k, v in timing_data.items():
print(f"{k}: {v}s")
print(f"=======================\n")
print(f"=== OUTPUT JSON ===")
print(json.dumps({"answers": responses}, indent=2))
print(f"==================\n")
return {"answers": responses}
except Exception as e:
print(f"Error: {str(e)}")
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
@app.post("/api/v1/hackrx/local")
async def run_local_query(request: LocalQueryRequest):
start_time = time.time()
timing_data = {}
try:
print("=== INPUT JSON ===")
print(json.dumps({"document_path": request.document_path, "questions": request.questions}, indent=2))
print("==================\n")
print(f"Processing {len(request.questions)} questions locally...")
pdf_start = time.time()
text_chunks = parse_pdf_from_file(request.document_path)
timing_data['pdf_parsing'] = round(time.time() - pdf_start, 2)
print(f"Extracted {len(text_chunks)} text chunks from PDF")
index_start = time.time()
index, texts = build_faiss_index(text_chunks)
timing_data['faiss_index_building'] = round(time.time() - index_start, 2)
retrieval_start = time.time()
all_chunks = set()
for question in request.questions:
top_chunks = retrieve_chunks(index, texts, question)
all_chunks.update(top_chunks)
timing_data['chunk_retrieval'] = round(time.time() - retrieval_start, 2)
print(f"Retrieved {len(all_chunks)} unique chunks")
questions = request.questions
context_chunks = list(all_chunks)
batch_size = 20
batches = [(i, questions[i:i + batch_size]) for i in range(0, len(questions), batch_size)]
llm_start = time.time()
results_dict = {}
with ThreadPoolExecutor(max_workers=min(5, len(batches))) as executor:
futures = [executor.submit(process_batch, batch, context_chunks) for _, batch in batches]
for (start_idx, batch), future in zip(batches, futures):
try:
result = future.result()
if isinstance(result, dict) and "answers" in result:
for j, answer in enumerate(result["answers"]):
results_dict[start_idx + j] = answer
else:
for j in range(len(batch)):
results_dict[start_idx + j] = "Error in response"
except Exception as e:
for j in range(len(batch)):
results_dict[start_idx + j] = f"Error: {str(e)}"
timing_data['llm_processing'] = round(time.time() - llm_start, 2)
responses = [results_dict.get(i, "Not Found") for i in range(len(questions))]
timing_data['total_time'] = round(time.time() - start_time, 2)
print(f"\n=== TIMING BREAKDOWN ===")
for k, v in timing_data.items():
print(f"{k}: {v}s")
print(f"=======================\n")
print(f"=== OUTPUT JSON ===")
print(json.dumps({"answers": responses}, indent=2))
print(f"==================\n")
return {"answers": responses}
except Exception as e:
print(f"Error: {str(e)}")
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
if __name__ == "__main__":
port = int(os.environ.get("PORT", 7860))
uvicorn.run("app:app", host="0.0.0.0", port=port)
|