Spaces:
Running
Running
Rivalcoder
commited on
Commit
·
862446b
1
Parent(s):
0589d55
[Edit] Update Of Size Of Questions
Browse files
app.py
CHANGED
@@ -4,6 +4,7 @@ import logging
|
|
4 |
import time
|
5 |
import json
|
6 |
from datetime import datetime
|
|
|
7 |
|
8 |
# Set up cache directory for HuggingFace models
|
9 |
cache_dir = os.path.join(os.getcwd(), ".cache")
|
@@ -17,11 +18,10 @@ os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
|
|
17 |
os.environ['TF_LOGGING_LEVEL'] = 'ERROR'
|
18 |
os.environ['TF_ENABLE_DEPRECATION_WARNINGS'] = '0'
|
19 |
|
20 |
-
# Suppress specific TensorFlow deprecation warnings
|
21 |
warnings.filterwarnings('ignore', category=DeprecationWarning, module='tensorflow')
|
22 |
logging.getLogger('tensorflow').setLevel(logging.ERROR)
|
23 |
|
24 |
-
from fastapi import FastAPI,
|
25 |
from fastapi.middleware.cors import CORSMiddleware
|
26 |
from pydantic import BaseModel
|
27 |
from pdf_parser import parse_pdf_from_url_multithreaded as parse_pdf_from_url, parse_pdf_from_file_multithreaded as parse_pdf_from_file
|
@@ -32,7 +32,6 @@ import uvicorn
|
|
32 |
|
33 |
app = FastAPI(title="HackRx Insurance Policy Assistant", version="1.0.0")
|
34 |
|
35 |
-
# Add CORS middleware
|
36 |
app.add_middleware(
|
37 |
CORSMiddleware,
|
38 |
allow_origins=["*"],
|
@@ -41,7 +40,6 @@ app.add_middleware(
|
|
41 |
allow_headers=["*"],
|
42 |
)
|
43 |
|
44 |
-
# Preload the model at startup
|
45 |
@app.on_event("startup")
|
46 |
async def startup_event():
|
47 |
print("Starting up HackRx Insurance Policy Assistant...")
|
@@ -55,7 +53,7 @@ async def root():
|
|
55 |
|
56 |
@app.get("/health")
|
57 |
async def health_check():
|
58 |
-
return {"status": "healthy"
|
59 |
|
60 |
class QueryRequest(BaseModel):
|
61 |
documents: str
|
@@ -68,201 +66,152 @@ class LocalQueryRequest(BaseModel):
|
|
68 |
def verify_token(authorization: str = Header(None)):
|
69 |
if not authorization or not authorization.startswith("Bearer "):
|
70 |
raise HTTPException(status_code=401, detail="Invalid authorization header")
|
71 |
-
|
72 |
token = authorization.replace("Bearer ", "")
|
73 |
-
# For demo purposes, accept any token. In production, validate against a database
|
74 |
if not token:
|
75 |
raise HTTPException(status_code=401, detail="Invalid token")
|
76 |
-
|
77 |
return token
|
78 |
|
|
|
|
|
|
|
79 |
@app.post("/api/v1/hackrx/run")
|
80 |
async def run_query(request: QueryRequest, token: str = Depends(verify_token)):
|
81 |
start_time = time.time()
|
82 |
timing_data = {}
|
83 |
-
|
84 |
try:
|
85 |
print("=== INPUT JSON ===")
|
86 |
-
print(json.dumps({
|
87 |
-
"documents": request.documents,
|
88 |
-
"questions": request.questions
|
89 |
-
}, indent=2))
|
90 |
print("==================\n")
|
91 |
-
|
92 |
print(f"Processing {len(request.questions)} questions...")
|
93 |
-
|
94 |
-
# Time PDF parsing
|
95 |
pdf_start = time.time()
|
96 |
text_chunks = parse_pdf_from_url(request.documents)
|
97 |
-
|
98 |
-
timing_data['pdf_parsing'] = round(pdf_time, 2)
|
99 |
print(f"Extracted {len(text_chunks)} text chunks from PDF")
|
100 |
-
|
101 |
-
# Time FAISS index building
|
102 |
index_start = time.time()
|
103 |
index, texts = build_faiss_index(text_chunks)
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
# Time chunk retrieval for all questions
|
108 |
retrieval_start = time.time()
|
109 |
all_chunks = set()
|
110 |
-
for
|
111 |
-
question_start = time.time()
|
112 |
top_chunks = retrieve_chunks(index, texts, question)
|
113 |
-
question_time = time.time() - question_start
|
114 |
all_chunks.update(top_chunks)
|
115 |
-
|
116 |
-
retrieval_time = time.time() - retrieval_start
|
117 |
-
timing_data['chunk_retrieval'] = round(retrieval_time, 2)
|
118 |
print(f"Retrieved {len(all_chunks)} unique chunks")
|
119 |
-
|
120 |
-
|
|
|
|
|
|
|
|
|
121 |
llm_start = time.time()
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
answers = answers[:len(request.questions)]
|
143 |
-
|
144 |
-
response_time = time.time() - response_start
|
145 |
-
timing_data['response_processing'] = round(response_time, 2)
|
146 |
-
print(f"Generated {len(answers)} answers")
|
147 |
-
|
148 |
-
# Calculate total time
|
149 |
-
total_time = time.time() - start_time
|
150 |
-
timing_data['total_time'] = round(total_time, 2)
|
151 |
-
|
152 |
print(f"\n=== TIMING BREAKDOWN ===")
|
153 |
-
|
154 |
-
|
155 |
-
print(f"Chunk Retrieval: {timing_data['chunk_retrieval']}s")
|
156 |
-
print(f"LLM Processing: {timing_data['llm_processing']}s")
|
157 |
-
print(f"Response Processing: {timing_data['response_processing']}s")
|
158 |
-
print(f"TOTAL TIME: {timing_data['total_time']}s")
|
159 |
print(f"=======================\n")
|
160 |
-
|
161 |
-
result = {"answers": answers}
|
162 |
print(f"=== OUTPUT JSON ===")
|
163 |
-
print(
|
164 |
print(f"==================\n")
|
165 |
-
|
166 |
-
return
|
167 |
-
|
168 |
except Exception as e:
|
169 |
-
|
170 |
-
print(f"Error after {total_time:.2f} seconds: {str(e)}")
|
171 |
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
172 |
|
173 |
@app.post("/api/v1/hackrx/local")
|
174 |
async def run_local_query(request: LocalQueryRequest):
|
175 |
start_time = time.time()
|
176 |
timing_data = {}
|
177 |
-
|
178 |
try:
|
179 |
-
print(
|
180 |
-
print(
|
181 |
-
print(
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
print(f"Processing {len(request.questions)} questions...")
|
186 |
-
|
187 |
-
# Time local PDF parsing
|
188 |
pdf_start = time.time()
|
189 |
text_chunks = parse_pdf_from_file(request.document_path)
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
# Time FAISS index building
|
195 |
index_start = time.time()
|
196 |
index, texts = build_faiss_index(text_chunks)
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
# Time chunk retrieval for all questions
|
201 |
retrieval_start = time.time()
|
202 |
all_chunks = set()
|
203 |
-
for
|
204 |
-
question_start = time.time()
|
205 |
top_chunks = retrieve_chunks(index, texts, question)
|
206 |
-
question_time = time.time() - question_start
|
207 |
all_chunks.update(top_chunks)
|
208 |
-
|
209 |
-
retrieval_time = time.time() - retrieval_start
|
210 |
-
timing_data['chunk_retrieval'] = round(retrieval_time, 2)
|
211 |
print(f"Retrieved {len(all_chunks)} unique chunks")
|
212 |
-
|
213 |
-
|
|
|
|
|
|
|
|
|
214 |
llm_start = time.time()
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
answers = answers[:len(request.questions)]
|
236 |
-
|
237 |
-
response_time = time.time() - response_start
|
238 |
-
timing_data['response_processing'] = round(response_time, 2)
|
239 |
-
print(f"Generated {len(answers)} answers")
|
240 |
-
|
241 |
-
# Calculate total time
|
242 |
-
total_time = time.time() - start_time
|
243 |
-
timing_data['total_time'] = round(total_time, 2)
|
244 |
-
|
245 |
print(f"\n=== TIMING BREAKDOWN ===")
|
246 |
-
|
247 |
-
|
248 |
-
print(f"Chunk Retrieval: {timing_data['chunk_retrieval']}s")
|
249 |
-
print(f"LLM Processing: {timing_data['llm_processing']}s")
|
250 |
-
print(f"Response Processing: {timing_data['response_processing']}s")
|
251 |
-
print(f"TOTAL TIME: {timing_data['total_time']}s")
|
252 |
print(f"=======================\n")
|
253 |
-
|
254 |
-
result = {"answers": answers}
|
255 |
print(f"=== OUTPUT JSON ===")
|
256 |
-
print(
|
257 |
print(f"==================\n")
|
258 |
-
|
259 |
-
return
|
260 |
-
|
261 |
except Exception as e:
|
262 |
-
|
263 |
-
print(f"Error after {total_time:.2f} seconds: {str(e)}")
|
264 |
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
265 |
|
266 |
if __name__ == "__main__":
|
267 |
port = int(os.environ.get("PORT", 7860))
|
268 |
-
uvicorn.run("app:app", host="0.0.0.0", port=port)
|
|
|
4 |
import time
|
5 |
import json
|
6 |
from datetime import datetime
|
7 |
+
from concurrent.futures import ThreadPoolExecutor
|
8 |
|
9 |
# Set up cache directory for HuggingFace models
|
10 |
cache_dir = os.path.join(os.getcwd(), ".cache")
|
|
|
18 |
os.environ['TF_LOGGING_LEVEL'] = 'ERROR'
|
19 |
os.environ['TF_ENABLE_DEPRECATION_WARNINGS'] = '0'
|
20 |
|
|
|
21 |
warnings.filterwarnings('ignore', category=DeprecationWarning, module='tensorflow')
|
22 |
logging.getLogger('tensorflow').setLevel(logging.ERROR)
|
23 |
|
24 |
+
from fastapi import FastAPI, HTTPException, Depends, Header
|
25 |
from fastapi.middleware.cors import CORSMiddleware
|
26 |
from pydantic import BaseModel
|
27 |
from pdf_parser import parse_pdf_from_url_multithreaded as parse_pdf_from_url, parse_pdf_from_file_multithreaded as parse_pdf_from_file
|
|
|
32 |
|
33 |
app = FastAPI(title="HackRx Insurance Policy Assistant", version="1.0.0")
|
34 |
|
|
|
35 |
app.add_middleware(
|
36 |
CORSMiddleware,
|
37 |
allow_origins=["*"],
|
|
|
40 |
allow_headers=["*"],
|
41 |
)
|
42 |
|
|
|
43 |
@app.on_event("startup")
|
44 |
async def startup_event():
|
45 |
print("Starting up HackRx Insurance Policy Assistant...")
|
|
|
53 |
|
54 |
@app.get("/health")
|
55 |
async def health_check():
|
56 |
+
return {"status": "healthy"}
|
57 |
|
58 |
class QueryRequest(BaseModel):
|
59 |
documents: str
|
|
|
66 |
def verify_token(authorization: str = Header(None)):
|
67 |
if not authorization or not authorization.startswith("Bearer "):
|
68 |
raise HTTPException(status_code=401, detail="Invalid authorization header")
|
|
|
69 |
token = authorization.replace("Bearer ", "")
|
|
|
70 |
if not token:
|
71 |
raise HTTPException(status_code=401, detail="Invalid token")
|
|
|
72 |
return token
|
73 |
|
74 |
+
def process_batch(batch_questions, context_chunks):
|
75 |
+
return query_gemini(batch_questions, context_chunks)
|
76 |
+
|
77 |
@app.post("/api/v1/hackrx/run")
|
78 |
async def run_query(request: QueryRequest, token: str = Depends(verify_token)):
|
79 |
start_time = time.time()
|
80 |
timing_data = {}
|
|
|
81 |
try:
|
82 |
print("=== INPUT JSON ===")
|
83 |
+
print(json.dumps({"documents": request.documents, "questions": request.questions}, indent=2))
|
|
|
|
|
|
|
84 |
print("==================\n")
|
85 |
+
|
86 |
print(f"Processing {len(request.questions)} questions...")
|
87 |
+
|
|
|
88 |
pdf_start = time.time()
|
89 |
text_chunks = parse_pdf_from_url(request.documents)
|
90 |
+
timing_data['pdf_parsing'] = round(time.time() - pdf_start, 2)
|
|
|
91 |
print(f"Extracted {len(text_chunks)} text chunks from PDF")
|
92 |
+
|
|
|
93 |
index_start = time.time()
|
94 |
index, texts = build_faiss_index(text_chunks)
|
95 |
+
timing_data['faiss_index_building'] = round(time.time() - index_start, 2)
|
96 |
+
|
|
|
|
|
97 |
retrieval_start = time.time()
|
98 |
all_chunks = set()
|
99 |
+
for question in request.questions:
|
|
|
100 |
top_chunks = retrieve_chunks(index, texts, question)
|
|
|
101 |
all_chunks.update(top_chunks)
|
102 |
+
timing_data['chunk_retrieval'] = round(time.time() - retrieval_start, 2)
|
|
|
|
|
103 |
print(f"Retrieved {len(all_chunks)} unique chunks")
|
104 |
+
|
105 |
+
questions = request.questions
|
106 |
+
context_chunks = list(all_chunks)
|
107 |
+
batch_size = 10
|
108 |
+
batches = [(i, questions[i:i + batch_size]) for i in range(0, len(questions), batch_size)]
|
109 |
+
|
110 |
llm_start = time.time()
|
111 |
+
results_dict = {}
|
112 |
+
with ThreadPoolExecutor(max_workers=min(5, len(batches))) as executor:
|
113 |
+
futures = [executor.submit(process_batch, batch, context_chunks) for _, batch in batches]
|
114 |
+
for (start_idx, batch), future in zip(batches, futures):
|
115 |
+
try:
|
116 |
+
result = future.result()
|
117 |
+
if isinstance(result, dict) and "answers" in result:
|
118 |
+
for j, answer in enumerate(result["answers"]):
|
119 |
+
results_dict[start_idx + j] = answer
|
120 |
+
else:
|
121 |
+
for j in range(len(batch)):
|
122 |
+
results_dict[start_idx + j] = "Error in response"
|
123 |
+
except Exception as e:
|
124 |
+
for j in range(len(batch)):
|
125 |
+
results_dict[start_idx + j] = f"Error: {str(e)}"
|
126 |
+
timing_data['llm_processing'] = round(time.time() - llm_start, 2)
|
127 |
+
|
128 |
+
responses = [results_dict.get(i, "Not Found") for i in range(len(questions))]
|
129 |
+
|
130 |
+
timing_data['total_time'] = round(time.time() - start_time, 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
print(f"\n=== TIMING BREAKDOWN ===")
|
132 |
+
for k, v in timing_data.items():
|
133 |
+
print(f"{k}: {v}s")
|
|
|
|
|
|
|
|
|
134 |
print(f"=======================\n")
|
135 |
+
|
|
|
136 |
print(f"=== OUTPUT JSON ===")
|
137 |
+
print(json.dumps({"answers": responses}, indent=2))
|
138 |
print(f"==================\n")
|
139 |
+
|
140 |
+
return {"answers": responses}
|
141 |
+
|
142 |
except Exception as e:
|
143 |
+
print(f"Error: {str(e)}")
|
|
|
144 |
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
145 |
|
146 |
@app.post("/api/v1/hackrx/local")
|
147 |
async def run_local_query(request: LocalQueryRequest):
|
148 |
start_time = time.time()
|
149 |
timing_data = {}
|
|
|
150 |
try:
|
151 |
+
print("=== INPUT JSON ===")
|
152 |
+
print(json.dumps({"document_path": request.document_path, "questions": request.questions}, indent=2))
|
153 |
+
print("==================\n")
|
154 |
+
|
155 |
+
print(f"Processing {len(request.questions)} questions locally...")
|
156 |
+
|
|
|
|
|
|
|
157 |
pdf_start = time.time()
|
158 |
text_chunks = parse_pdf_from_file(request.document_path)
|
159 |
+
timing_data['pdf_parsing'] = round(time.time() - pdf_start, 2)
|
160 |
+
print(f"Extracted {len(text_chunks)} text chunks from PDF")
|
161 |
+
|
|
|
|
|
162 |
index_start = time.time()
|
163 |
index, texts = build_faiss_index(text_chunks)
|
164 |
+
timing_data['faiss_index_building'] = round(time.time() - index_start, 2)
|
165 |
+
|
|
|
|
|
166 |
retrieval_start = time.time()
|
167 |
all_chunks = set()
|
168 |
+
for question in request.questions:
|
|
|
169 |
top_chunks = retrieve_chunks(index, texts, question)
|
|
|
170 |
all_chunks.update(top_chunks)
|
171 |
+
timing_data['chunk_retrieval'] = round(time.time() - retrieval_start, 2)
|
|
|
|
|
172 |
print(f"Retrieved {len(all_chunks)} unique chunks")
|
173 |
+
|
174 |
+
questions = request.questions
|
175 |
+
context_chunks = list(all_chunks)
|
176 |
+
batch_size = 20
|
177 |
+
batches = [(i, questions[i:i + batch_size]) for i in range(0, len(questions), batch_size)]
|
178 |
+
|
179 |
llm_start = time.time()
|
180 |
+
results_dict = {}
|
181 |
+
with ThreadPoolExecutor(max_workers=min(5, len(batches))) as executor:
|
182 |
+
futures = [executor.submit(process_batch, batch, context_chunks) for _, batch in batches]
|
183 |
+
for (start_idx, batch), future in zip(batches, futures):
|
184 |
+
try:
|
185 |
+
result = future.result()
|
186 |
+
if isinstance(result, dict) and "answers" in result:
|
187 |
+
for j, answer in enumerate(result["answers"]):
|
188 |
+
results_dict[start_idx + j] = answer
|
189 |
+
else:
|
190 |
+
for j in range(len(batch)):
|
191 |
+
results_dict[start_idx + j] = "Error in response"
|
192 |
+
except Exception as e:
|
193 |
+
for j in range(len(batch)):
|
194 |
+
results_dict[start_idx + j] = f"Error: {str(e)}"
|
195 |
+
timing_data['llm_processing'] = round(time.time() - llm_start, 2)
|
196 |
+
|
197 |
+
responses = [results_dict.get(i, "Not Found") for i in range(len(questions))]
|
198 |
+
|
199 |
+
timing_data['total_time'] = round(time.time() - start_time, 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
200 |
print(f"\n=== TIMING BREAKDOWN ===")
|
201 |
+
for k, v in timing_data.items():
|
202 |
+
print(f"{k}: {v}s")
|
|
|
|
|
|
|
|
|
203 |
print(f"=======================\n")
|
204 |
+
|
|
|
205 |
print(f"=== OUTPUT JSON ===")
|
206 |
+
print(json.dumps({"answers": responses}, indent=2))
|
207 |
print(f"==================\n")
|
208 |
+
|
209 |
+
return {"answers": responses}
|
210 |
+
|
211 |
except Exception as e:
|
212 |
+
print(f"Error: {str(e)}")
|
|
|
213 |
raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
|
214 |
|
215 |
if __name__ == "__main__":
|
216 |
port = int(os.environ.get("PORT", 7860))
|
217 |
+
uvicorn.run("app:app", host="0.0.0.0", port=port)
|