Rivalcoder commited on
Commit
862446b
·
1 Parent(s): 0589d55

[Edit] Update Of Size Of Questions

Browse files
Files changed (1) hide show
  1. app.py +97 -148
app.py CHANGED
@@ -4,6 +4,7 @@ import logging
4
  import time
5
  import json
6
  from datetime import datetime
 
7
 
8
  # Set up cache directory for HuggingFace models
9
  cache_dir = os.path.join(os.getcwd(), ".cache")
@@ -17,11 +18,10 @@ os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
17
  os.environ['TF_LOGGING_LEVEL'] = 'ERROR'
18
  os.environ['TF_ENABLE_DEPRECATION_WARNINGS'] = '0'
19
 
20
- # Suppress specific TensorFlow deprecation warnings
21
  warnings.filterwarnings('ignore', category=DeprecationWarning, module='tensorflow')
22
  logging.getLogger('tensorflow').setLevel(logging.ERROR)
23
 
24
- from fastapi import FastAPI, Request, HTTPException, Depends, Header
25
  from fastapi.middleware.cors import CORSMiddleware
26
  from pydantic import BaseModel
27
  from pdf_parser import parse_pdf_from_url_multithreaded as parse_pdf_from_url, parse_pdf_from_file_multithreaded as parse_pdf_from_file
@@ -32,7 +32,6 @@ import uvicorn
32
 
33
  app = FastAPI(title="HackRx Insurance Policy Assistant", version="1.0.0")
34
 
35
- # Add CORS middleware
36
  app.add_middleware(
37
  CORSMiddleware,
38
  allow_origins=["*"],
@@ -41,7 +40,6 @@ app.add_middleware(
41
  allow_headers=["*"],
42
  )
43
 
44
- # Preload the model at startup
45
  @app.on_event("startup")
46
  async def startup_event():
47
  print("Starting up HackRx Insurance Policy Assistant...")
@@ -55,7 +53,7 @@ async def root():
55
 
56
  @app.get("/health")
57
  async def health_check():
58
- return {"status": "healthy", "message": "API is ready to process requests"}
59
 
60
  class QueryRequest(BaseModel):
61
  documents: str
@@ -68,201 +66,152 @@ class LocalQueryRequest(BaseModel):
68
  def verify_token(authorization: str = Header(None)):
69
  if not authorization or not authorization.startswith("Bearer "):
70
  raise HTTPException(status_code=401, detail="Invalid authorization header")
71
-
72
  token = authorization.replace("Bearer ", "")
73
- # For demo purposes, accept any token. In production, validate against a database
74
  if not token:
75
  raise HTTPException(status_code=401, detail="Invalid token")
76
-
77
  return token
78
 
 
 
 
79
  @app.post("/api/v1/hackrx/run")
80
  async def run_query(request: QueryRequest, token: str = Depends(verify_token)):
81
  start_time = time.time()
82
  timing_data = {}
83
-
84
  try:
85
  print("=== INPUT JSON ===")
86
- print(json.dumps({
87
- "documents": request.documents,
88
- "questions": request.questions
89
- }, indent=2))
90
  print("==================\n")
91
-
92
  print(f"Processing {len(request.questions)} questions...")
93
-
94
- # Time PDF parsing
95
  pdf_start = time.time()
96
  text_chunks = parse_pdf_from_url(request.documents)
97
- pdf_time = time.time() - pdf_start
98
- timing_data['pdf_parsing'] = round(pdf_time, 2)
99
  print(f"Extracted {len(text_chunks)} text chunks from PDF")
100
-
101
- # Time FAISS index building
102
  index_start = time.time()
103
  index, texts = build_faiss_index(text_chunks)
104
- index_time = time.time() - index_start
105
- timing_data['faiss_index_building'] = round(index_time, 2)
106
-
107
- # Time chunk retrieval for all questions
108
  retrieval_start = time.time()
109
  all_chunks = set()
110
- for i, question in enumerate(request.questions):
111
- question_start = time.time()
112
  top_chunks = retrieve_chunks(index, texts, question)
113
- question_time = time.time() - question_start
114
  all_chunks.update(top_chunks)
115
-
116
- retrieval_time = time.time() - retrieval_start
117
- timing_data['chunk_retrieval'] = round(retrieval_time, 2)
118
  print(f"Retrieved {len(all_chunks)} unique chunks")
119
-
120
- # Time LLM processing
 
 
 
 
121
  llm_start = time.time()
122
- print(f"Processing all {len(request.questions)} questions in batch...")
123
- response = query_gemini(request.questions, list(all_chunks))
124
- llm_time = time.time() - llm_start
125
- timing_data['llm_processing'] = round(llm_time, 2)
126
-
127
- # Time response processing
128
- response_start = time.time()
129
- # Extract answers from the JSON response
130
- if isinstance(response, dict) and "answers" in response:
131
- answers = response["answers"]
132
- # Ensure we have the right number of answers
133
- while len(answers) < len(request.questions):
134
- answers.append("Not Found")
135
- answers = answers[:len(request.questions)]
136
- else:
137
- # Fallback if response is not in expected format
138
- answers = [response] if isinstance(response, str) else []
139
- # Ensure we have the right number of answers
140
- while len(answers) < len(request.questions):
141
- answers.append("Not Found")
142
- answers = answers[:len(request.questions)]
143
-
144
- response_time = time.time() - response_start
145
- timing_data['response_processing'] = round(response_time, 2)
146
- print(f"Generated {len(answers)} answers")
147
-
148
- # Calculate total time
149
- total_time = time.time() - start_time
150
- timing_data['total_time'] = round(total_time, 2)
151
-
152
  print(f"\n=== TIMING BREAKDOWN ===")
153
- print(f"PDF Parsing: {timing_data['pdf_parsing']}s")
154
- print(f"FAISS Index Building: {timing_data['faiss_index_building']}s")
155
- print(f"Chunk Retrieval: {timing_data['chunk_retrieval']}s")
156
- print(f"LLM Processing: {timing_data['llm_processing']}s")
157
- print(f"Response Processing: {timing_data['response_processing']}s")
158
- print(f"TOTAL TIME: {timing_data['total_time']}s")
159
  print(f"=======================\n")
160
-
161
- result = {"answers": answers}
162
  print(f"=== OUTPUT JSON ===")
163
- print(f"{result}")
164
  print(f"==================\n")
165
-
166
- return result
167
-
168
  except Exception as e:
169
- total_time = time.time() - start_time
170
- print(f"Error after {total_time:.2f} seconds: {str(e)}")
171
  raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
172
 
173
  @app.post("/api/v1/hackrx/local")
174
  async def run_local_query(request: LocalQueryRequest):
175
  start_time = time.time()
176
  timing_data = {}
177
-
178
  try:
179
- print(f"\n=== INPUT JSON ===")
180
- print(f"Document Path: {request.document_path}")
181
- print(f"Questions: {request.questions}")
182
- print(f"==================\n")
183
-
184
- print(f"Processing local document: {request.document_path}")
185
- print(f"Processing {len(request.questions)} questions...")
186
-
187
- # Time local PDF parsing
188
  pdf_start = time.time()
189
  text_chunks = parse_pdf_from_file(request.document_path)
190
- pdf_time = time.time() - pdf_start
191
- timing_data['pdf_parsing'] = round(pdf_time, 2)
192
- print(f"Extracted {len(text_chunks)} text chunks from local PDF")
193
-
194
- # Time FAISS index building
195
  index_start = time.time()
196
  index, texts = build_faiss_index(text_chunks)
197
- index_time = time.time() - index_start
198
- timing_data['faiss_index_building'] = round(index_time, 2)
199
-
200
- # Time chunk retrieval for all questions
201
  retrieval_start = time.time()
202
  all_chunks = set()
203
- for i, question in enumerate(request.questions):
204
- question_start = time.time()
205
  top_chunks = retrieve_chunks(index, texts, question)
206
- question_time = time.time() - question_start
207
  all_chunks.update(top_chunks)
208
-
209
- retrieval_time = time.time() - retrieval_start
210
- timing_data['chunk_retrieval'] = round(retrieval_time, 2)
211
  print(f"Retrieved {len(all_chunks)} unique chunks")
212
-
213
- # Time LLM processing
 
 
 
 
214
  llm_start = time.time()
215
- print(f"Processing all {len(request.questions)} questions in batch...")
216
- response = query_gemini(request.questions, list(all_chunks))
217
- llm_time = time.time() - llm_start
218
- timing_data['llm_processing'] = round(llm_time, 2)
219
-
220
- # Time response processing
221
- response_start = time.time()
222
- # Extract answers from the JSON response
223
- if isinstance(response, dict) and "answers" in response:
224
- answers = response["answers"]
225
- # Ensure we have the right number of answers
226
- while len(answers) < len(request.questions):
227
- answers.append("Not Found")
228
- answers = answers[:len(request.questions)]
229
- else:
230
- # Fallback if response is not in expected format
231
- answers = [response] if isinstance(response, str) else []
232
- # Ensure we have the right number of answers
233
- while len(answers) < len(request.questions):
234
- answers.append("Not Found")
235
- answers = answers[:len(request.questions)]
236
-
237
- response_time = time.time() - response_start
238
- timing_data['response_processing'] = round(response_time, 2)
239
- print(f"Generated {len(answers)} answers")
240
-
241
- # Calculate total time
242
- total_time = time.time() - start_time
243
- timing_data['total_time'] = round(total_time, 2)
244
-
245
  print(f"\n=== TIMING BREAKDOWN ===")
246
- print(f"PDF Parsing: {timing_data['pdf_parsing']}s")
247
- print(f"FAISS Index Building: {timing_data['faiss_index_building']}s")
248
- print(f"Chunk Retrieval: {timing_data['chunk_retrieval']}s")
249
- print(f"LLM Processing: {timing_data['llm_processing']}s")
250
- print(f"Response Processing: {timing_data['response_processing']}s")
251
- print(f"TOTAL TIME: {timing_data['total_time']}s")
252
  print(f"=======================\n")
253
-
254
- result = {"answers": answers}
255
  print(f"=== OUTPUT JSON ===")
256
- print(f"{result}")
257
  print(f"==================\n")
258
-
259
- return result
260
-
261
  except Exception as e:
262
- total_time = time.time() - start_time
263
- print(f"Error after {total_time:.2f} seconds: {str(e)}")
264
  raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
265
 
266
  if __name__ == "__main__":
267
  port = int(os.environ.get("PORT", 7860))
268
- uvicorn.run("app:app", host="0.0.0.0", port=port)
 
4
  import time
5
  import json
6
  from datetime import datetime
7
+ from concurrent.futures import ThreadPoolExecutor
8
 
9
  # Set up cache directory for HuggingFace models
10
  cache_dir = os.path.join(os.getcwd(), ".cache")
 
18
  os.environ['TF_LOGGING_LEVEL'] = 'ERROR'
19
  os.environ['TF_ENABLE_DEPRECATION_WARNINGS'] = '0'
20
 
 
21
  warnings.filterwarnings('ignore', category=DeprecationWarning, module='tensorflow')
22
  logging.getLogger('tensorflow').setLevel(logging.ERROR)
23
 
24
+ from fastapi import FastAPI, HTTPException, Depends, Header
25
  from fastapi.middleware.cors import CORSMiddleware
26
  from pydantic import BaseModel
27
  from pdf_parser import parse_pdf_from_url_multithreaded as parse_pdf_from_url, parse_pdf_from_file_multithreaded as parse_pdf_from_file
 
32
 
33
  app = FastAPI(title="HackRx Insurance Policy Assistant", version="1.0.0")
34
 
 
35
  app.add_middleware(
36
  CORSMiddleware,
37
  allow_origins=["*"],
 
40
  allow_headers=["*"],
41
  )
42
 
 
43
  @app.on_event("startup")
44
  async def startup_event():
45
  print("Starting up HackRx Insurance Policy Assistant...")
 
53
 
54
  @app.get("/health")
55
  async def health_check():
56
+ return {"status": "healthy"}
57
 
58
  class QueryRequest(BaseModel):
59
  documents: str
 
66
  def verify_token(authorization: str = Header(None)):
67
  if not authorization or not authorization.startswith("Bearer "):
68
  raise HTTPException(status_code=401, detail="Invalid authorization header")
 
69
  token = authorization.replace("Bearer ", "")
 
70
  if not token:
71
  raise HTTPException(status_code=401, detail="Invalid token")
 
72
  return token
73
 
74
+ def process_batch(batch_questions, context_chunks):
75
+ return query_gemini(batch_questions, context_chunks)
76
+
77
  @app.post("/api/v1/hackrx/run")
78
  async def run_query(request: QueryRequest, token: str = Depends(verify_token)):
79
  start_time = time.time()
80
  timing_data = {}
 
81
  try:
82
  print("=== INPUT JSON ===")
83
+ print(json.dumps({"documents": request.documents, "questions": request.questions}, indent=2))
 
 
 
84
  print("==================\n")
85
+
86
  print(f"Processing {len(request.questions)} questions...")
87
+
 
88
  pdf_start = time.time()
89
  text_chunks = parse_pdf_from_url(request.documents)
90
+ timing_data['pdf_parsing'] = round(time.time() - pdf_start, 2)
 
91
  print(f"Extracted {len(text_chunks)} text chunks from PDF")
92
+
 
93
  index_start = time.time()
94
  index, texts = build_faiss_index(text_chunks)
95
+ timing_data['faiss_index_building'] = round(time.time() - index_start, 2)
96
+
 
 
97
  retrieval_start = time.time()
98
  all_chunks = set()
99
+ for question in request.questions:
 
100
  top_chunks = retrieve_chunks(index, texts, question)
 
101
  all_chunks.update(top_chunks)
102
+ timing_data['chunk_retrieval'] = round(time.time() - retrieval_start, 2)
 
 
103
  print(f"Retrieved {len(all_chunks)} unique chunks")
104
+
105
+ questions = request.questions
106
+ context_chunks = list(all_chunks)
107
+ batch_size = 10
108
+ batches = [(i, questions[i:i + batch_size]) for i in range(0, len(questions), batch_size)]
109
+
110
  llm_start = time.time()
111
+ results_dict = {}
112
+ with ThreadPoolExecutor(max_workers=min(5, len(batches))) as executor:
113
+ futures = [executor.submit(process_batch, batch, context_chunks) for _, batch in batches]
114
+ for (start_idx, batch), future in zip(batches, futures):
115
+ try:
116
+ result = future.result()
117
+ if isinstance(result, dict) and "answers" in result:
118
+ for j, answer in enumerate(result["answers"]):
119
+ results_dict[start_idx + j] = answer
120
+ else:
121
+ for j in range(len(batch)):
122
+ results_dict[start_idx + j] = "Error in response"
123
+ except Exception as e:
124
+ for j in range(len(batch)):
125
+ results_dict[start_idx + j] = f"Error: {str(e)}"
126
+ timing_data['llm_processing'] = round(time.time() - llm_start, 2)
127
+
128
+ responses = [results_dict.get(i, "Not Found") for i in range(len(questions))]
129
+
130
+ timing_data['total_time'] = round(time.time() - start_time, 2)
 
 
 
 
 
 
 
 
 
 
131
  print(f"\n=== TIMING BREAKDOWN ===")
132
+ for k, v in timing_data.items():
133
+ print(f"{k}: {v}s")
 
 
 
 
134
  print(f"=======================\n")
135
+
 
136
  print(f"=== OUTPUT JSON ===")
137
+ print(json.dumps({"answers": responses}, indent=2))
138
  print(f"==================\n")
139
+
140
+ return {"answers": responses}
141
+
142
  except Exception as e:
143
+ print(f"Error: {str(e)}")
 
144
  raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
145
 
146
  @app.post("/api/v1/hackrx/local")
147
  async def run_local_query(request: LocalQueryRequest):
148
  start_time = time.time()
149
  timing_data = {}
 
150
  try:
151
+ print("=== INPUT JSON ===")
152
+ print(json.dumps({"document_path": request.document_path, "questions": request.questions}, indent=2))
153
+ print("==================\n")
154
+
155
+ print(f"Processing {len(request.questions)} questions locally...")
156
+
 
 
 
157
  pdf_start = time.time()
158
  text_chunks = parse_pdf_from_file(request.document_path)
159
+ timing_data['pdf_parsing'] = round(time.time() - pdf_start, 2)
160
+ print(f"Extracted {len(text_chunks)} text chunks from PDF")
161
+
 
 
162
  index_start = time.time()
163
  index, texts = build_faiss_index(text_chunks)
164
+ timing_data['faiss_index_building'] = round(time.time() - index_start, 2)
165
+
 
 
166
  retrieval_start = time.time()
167
  all_chunks = set()
168
+ for question in request.questions:
 
169
  top_chunks = retrieve_chunks(index, texts, question)
 
170
  all_chunks.update(top_chunks)
171
+ timing_data['chunk_retrieval'] = round(time.time() - retrieval_start, 2)
 
 
172
  print(f"Retrieved {len(all_chunks)} unique chunks")
173
+
174
+ questions = request.questions
175
+ context_chunks = list(all_chunks)
176
+ batch_size = 20
177
+ batches = [(i, questions[i:i + batch_size]) for i in range(0, len(questions), batch_size)]
178
+
179
  llm_start = time.time()
180
+ results_dict = {}
181
+ with ThreadPoolExecutor(max_workers=min(5, len(batches))) as executor:
182
+ futures = [executor.submit(process_batch, batch, context_chunks) for _, batch in batches]
183
+ for (start_idx, batch), future in zip(batches, futures):
184
+ try:
185
+ result = future.result()
186
+ if isinstance(result, dict) and "answers" in result:
187
+ for j, answer in enumerate(result["answers"]):
188
+ results_dict[start_idx + j] = answer
189
+ else:
190
+ for j in range(len(batch)):
191
+ results_dict[start_idx + j] = "Error in response"
192
+ except Exception as e:
193
+ for j in range(len(batch)):
194
+ results_dict[start_idx + j] = f"Error: {str(e)}"
195
+ timing_data['llm_processing'] = round(time.time() - llm_start, 2)
196
+
197
+ responses = [results_dict.get(i, "Not Found") for i in range(len(questions))]
198
+
199
+ timing_data['total_time'] = round(time.time() - start_time, 2)
 
 
 
 
 
 
 
 
 
 
200
  print(f"\n=== TIMING BREAKDOWN ===")
201
+ for k, v in timing_data.items():
202
+ print(f"{k}: {v}s")
 
 
 
 
203
  print(f"=======================\n")
204
+
 
205
  print(f"=== OUTPUT JSON ===")
206
+ print(json.dumps({"answers": responses}, indent=2))
207
  print(f"==================\n")
208
+
209
+ return {"answers": responses}
210
+
211
  except Exception as e:
212
+ print(f"Error: {str(e)}")
 
213
  raise HTTPException(status_code=500, detail=f"Internal server error: {str(e)}")
214
 
215
  if __name__ == "__main__":
216
  port = int(os.environ.get("PORT", 7860))
217
+ uvicorn.run("app:app", host="0.0.0.0", port=port)