|
from transformers import BertTokenizer, BertForSequenceClassification |
|
import torch |
|
|
|
|
|
|
|
model = BertForSequenceClassification.from_pretrained('./confidence_model') |
|
tokenizer = BertTokenizer.from_pretrained('./confidence_tokenizer') |
|
|
|
def predict_confidence(question, answer): |
|
inputs = tokenizer(question, answer, return_tensors="pt", padding=True, truncation=True) |
|
model.eval() |
|
|
|
with torch.no_grad(): |
|
outputs = model(**inputs) |
|
logits = outputs.logits |
|
predictions = torch.argmax(logits, dim=-1) |
|
return "Confident" if predictions.item() == 1 else "Not Confident" |
|
|
|
|
|
question = "What is your experience with Python?" |
|
answer = "I dont have any experience in Python" |
|
print(predict_confidence(question, answer)) |
|
|