from transformers import BertTokenizer, BertForSequenceClassification import torch model = BertForSequenceClassification.from_pretrained('./confidence_model') tokenizer = BertTokenizer.from_pretrained('./confidence_tokenizer') def predict_confidence(question, answer): inputs = tokenizer(question, answer, return_tensors="pt", padding=True, truncation=True) model.eval() with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits predictions = torch.argmax(logits, dim=-1) return "Confident" if predictions.item() == 1 else "Not Confident" # Example question = "What is your experience with Python?" answer = "I dont have any experience in Python" print(predict_confidence(question, answer))