LetsQuant / app.py
ReallyFloppyPenguin's picture
Create app.py
6f9845a verified
#!/usr/bin/env python3
"""
Hugging Face Space: GGUF Model Converter
A web interface for converting Hugging Face models to GGUF format
This Space provides:
1. Web interface for model conversion
2. Progress tracking and logging
3. Automatic upload to Hugging Face
4. Resource monitoring
"""
import os
import sys
import subprocess
import shutil
import logging
import tempfile
import threading
import queue
import time
import psutil
import gc
from pathlib import Path
from typing import Optional, List, Dict, Any
from datetime import datetime
import gradio as gr
import torch
# Try importing required packages
try:
from huggingface_hub import HfApi, login, create_repo, snapshot_download
from transformers import AutoConfig, AutoTokenizer
HF_HUB_AVAILABLE = True
except ImportError:
HF_HUB_AVAILABLE = False
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Global variables for progress tracking
conversion_progress = queue.Queue()
current_status = {"status": "idle", "progress": 0, "message": "Ready"}
class SpaceGGUFConverter:
def __init__(self):
"""Initialize the GGUF converter for Hugging Face Spaces"""
self.temp_dir = None
self.llama_cpp_dir = None
self.hf_token = None
def set_hf_token(self, token: str):
"""Set the Hugging Face token"""
self.hf_token = token
if token:
login(token=token)
return "βœ… HF Token set successfully!"
return "❌ Invalid token"
def update_progress(self, status: str, progress: int, message: str):
"""Update the global progress status"""
global current_status
current_status = {
"status": status,
"progress": progress,
"message": message,
"timestamp": datetime.now().strftime("%H:%M:%S")
}
conversion_progress.put(current_status.copy())
def check_resources(self) -> Dict[str, Any]:
"""Check available system resources"""
try:
memory = psutil.virtual_memory()
disk = psutil.disk_usage('/')
return {
"memory_total": f"{memory.total / (1024**3):.1f} GB",
"memory_available": f"{memory.available / (1024**3):.1f} GB",
"memory_percent": memory.percent,
"disk_total": f"{disk.total / (1024**3):.1f} GB",
"disk_free": f"{disk.free / (1024**3):.1f} GB",
"disk_percent": disk.percent,
"cpu_count": psutil.cpu_count(),
"gpu_available": torch.cuda.is_available(),
"gpu_memory": f"{torch.cuda.get_device_properties(0).total_memory / (1024**3):.1f} GB" if torch.cuda.is_available() else "N/A"
}
except Exception as e:
return {"error": str(e)}
def validate_model(self, model_id: str) -> tuple[bool, str]:
"""Validate if the model exists and get basic info"""
try:
if not HF_HUB_AVAILABLE:
return False, "❌ Required packages not available"
self.update_progress("validating", 10, f"Validating model: {model_id}")
# Try to get model config
config = AutoConfig.from_pretrained(model_id, trust_remote_code=False)
# Get approximate model size
try:
api = HfApi()
model_info = api.model_info(model_id)
# Calculate approximate size from number of parameters
if hasattr(config, 'num_parameters'):
params = config.num_parameters()
elif hasattr(config, 'n_params'):
params = config.n_params
else:
# Estimate from model files
params = "Unknown"
estimated_size = f"~{params/1e9:.1f}B parameters" if isinstance(params, (int, float)) else params
return True, f"βœ… Valid model found!\nParameters: {estimated_size}\nArchitecture: {config.model_type if hasattr(config, 'model_type') else 'Unknown'}"
except Exception as e:
return True, f"βœ… Model accessible (size estimation failed: {str(e)})"
except Exception as e:
return False, f"❌ Model validation failed: {str(e)}"
def setup_environment(self) -> bool:
"""Set up the environment for GGUF conversion"""
try:
self.update_progress("setup", 20, "Setting up conversion environment...")
# Create temporary directory
self.temp_dir = tempfile.mkdtemp(prefix="gguf_space_")
logger.info(f"Created temporary directory: {self.temp_dir}")
# Clone llama.cpp
self.llama_cpp_dir = os.path.join(self.temp_dir, "llama.cpp")
self.update_progress("setup", 30, "Downloading llama.cpp...")
result = subprocess.run([
"git", "clone", "--depth", "1",
"https://github.com/ggerganov/llama.cpp.git",
self.llama_cpp_dir
], capture_output=True, text=True)
if result.returncode != 0:
raise Exception(f"Failed to clone llama.cpp: {result.stderr}")
# Build llama.cpp
self.update_progress("setup", 50, "Building llama.cpp (this may take a few minutes)...")
original_dir = os.getcwd()
try:
os.chdir(self.llama_cpp_dir)
# Configure with CMake
configure_result = subprocess.run([
"cmake", "-S", ".", "-B", "build",
"-DCMAKE_BUILD_TYPE=Release",
"-DLLAMA_BUILD_TESTS=OFF",
"-DLLAMA_BUILD_EXAMPLES=ON"
], capture_output=True, text=True)
if configure_result.returncode != 0:
raise Exception(f"CMake configure failed: {configure_result.stderr}")
# Build
build_result = subprocess.run([
"cmake", "--build", "build", "--config", "Release", "-j"
], capture_output=True, text=True)
if build_result.returncode != 0:
raise Exception(f"CMake build failed: {build_result.stderr}")
finally:
os.chdir(original_dir)
self.update_progress("setup", 70, "Environment setup complete!")
return True
except Exception as e:
self.update_progress("error", 0, f"Setup failed: {str(e)}")
logger.error(f"Environment setup failed: {e}")
return False
def convert_model(
self,
model_id: str,
output_repo: str,
quantizations: List[str],
hf_token: str,
private_repo: bool = False
) -> tuple[bool, str]:
"""Convert model to GGUF format"""
try:
if not hf_token:
return False, "❌ Hugging Face token is required"
# Set token
self.set_hf_token(hf_token)
# Validate model first
valid, validation_msg = self.validate_model(model_id)
if not valid:
return False, validation_msg
# Check resources
resources = self.check_resources()
if resources.get("memory_percent", 100) > 90:
return False, "❌ Insufficient memory available (>90% used)"
# Setup environment
if not self.setup_environment():
return False, "❌ Failed to setup environment"
# Download model
self.update_progress("downloading", 80, f"Downloading model: {model_id}")
model_dir = os.path.join(self.temp_dir, "original_model")
try:
snapshot_download(
repo_id=model_id,
local_dir=model_dir,
token=hf_token
)
except Exception as e:
return False, f"❌ Failed to download model: {str(e)}"
# Convert to GGUF
self.update_progress("converting", 85, "Converting to GGUF format...")
gguf_dir = os.path.join(self.temp_dir, "gguf_output")
os.makedirs(gguf_dir, exist_ok=True)
# Convert to f16 first
convert_script = os.path.join(self.llama_cpp_dir, "convert_hf_to_gguf.py")
f16_output = os.path.join(gguf_dir, "model-f16.gguf")
convert_result = subprocess.run([
sys.executable, convert_script,
model_dir,
"--outfile", f16_output,
"--outtype", "f16"
], capture_output=True, text=True)
if convert_result.returncode != 0:
return False, f"❌ F16 conversion failed: {convert_result.stderr}"
# Find quantize binary
quantize_binary = self._find_quantize_binary()
if not quantize_binary:
return False, "❌ Could not find llama-quantize binary"
# Create quantizations
successful_quants = ["f16"]
for i, quant in enumerate(quantizations):
if quant == "f16":
continue
progress = 85 + (10 * i / len(quantizations))
self.update_progress("converting", int(progress), f"Creating {quant} quantization...")
quant_output = os.path.join(gguf_dir, f"model-{quant}.gguf")
quant_result = subprocess.run([
quantize_binary,
f16_output,
quant_output,
quant.upper()
], capture_output=True, text=True)
if quant_result.returncode == 0:
successful_quants.append(quant)
else:
logger.warning(f"Failed to create {quant} quantization: {quant_result.stderr}")
# Create model card
self._create_model_card(model_id, gguf_dir, successful_quants)
# Upload to Hugging Face
self.update_progress("uploading", 95, f"Uploading to {output_repo}...")
try:
api = HfApi(token=hf_token)
create_repo(output_repo, private=private_repo, exist_ok=True, token=hf_token)
for file_path in Path(gguf_dir).rglob("*"):
if file_path.is_file():
relative_path = file_path.relative_to(gguf_dir)
api.upload_file(
path_or_fileobj=str(file_path),
path_in_repo=str(relative_path),
repo_id=output_repo,
repo_type="model",
token=hf_token
)
except Exception as e:
return False, f"❌ Upload failed: {str(e)}"
self.update_progress("complete", 100, "Conversion completed successfully!")
return True, f"""βœ… Conversion completed successfully!
πŸ“Š **Results:**
- Successfully created: {', '.join(successful_quants)} quantizations
- Uploaded to: https://huggingface.co/{output_repo}
- Files created: {len(successful_quants)} GGUF files + README.md
πŸ”— **Links:**
- View model: https://huggingface.co/{output_repo}
- Download files: https://huggingface.co/{output_repo}/tree/main
"""
except Exception as e:
self.update_progress("error", 0, f"Conversion failed: {str(e)}")
return False, f"❌ Conversion failed: {str(e)}"
finally:
# Cleanup
self._cleanup()
gc.collect()
def _find_quantize_binary(self) -> Optional[str]:
"""Find the llama-quantize binary"""
possible_locations = [
os.path.join(self.llama_cpp_dir, "build", "bin", "llama-quantize"),
os.path.join(self.llama_cpp_dir, "build", "llama-quantize"),
os.path.join(self.llama_cpp_dir, "build", "llama-quantize.exe"),
os.path.join(self.llama_cpp_dir, "build", "bin", "llama-quantize.exe")
]
for location in possible_locations:
if os.path.exists(location):
return location
return None
def _create_model_card(self, original_model_id: str, output_dir: str, quantizations: List[str]):
"""Create a model card for the GGUF model"""
quant_table = []
for quant in quantizations:
filename = f"model-{quant}.gguf"
if quant == "f16":
desc = "Original precision (largest file)"
elif "q4" in quant:
desc = "4-bit quantization (good balance)"
elif "q5" in quant:
desc = "5-bit quantization (higher quality)"
elif "q8" in quant:
desc = "8-bit quantization (high quality)"
else:
desc = "Quantized version"
quant_table.append(f"| {filename} | {quant.upper()} | {desc} |")
model_card_content = f"""---
language:
- en
library_name: gguf
base_model: {original_model_id}
tags:
- gguf
- quantized
- llama.cpp
- converted
license: apache-2.0
---
# {original_model_id} - GGUF
This repository contains GGUF quantizations of [{original_model_id}](https://huggingface.co/{original_model_id}).
**Converted using [HF GGUF Converter Space](https://huggingface.co/spaces/)**
## About GGUF
GGUF is a quantization method that allows you to run large language models on consumer hardware by reducing the precision of the model weights.
## Files
| Filename | Quant type | Description |
| -------- | ---------- | ----------- |
{chr(10).join(quant_table)}
## Usage
You can use these models with llama.cpp or any other GGUF-compatible inference engine.
### llama.cpp
```bash
./llama-cli -m model-q4_0.gguf -p "Your prompt here"
```
### Python (using llama-cpp-python)
```python
from llama_cpp import Llama
llm = Llama(model_path="model-q4_0.gguf")
output = llm("Your prompt here", max_tokens=512)
print(output['choices'][0]['text'])
```
## Original Model
This is a quantized version of [{original_model_id}](https://huggingface.co/{original_model_id}). Please refer to the original model card for more information about the model's capabilities, training data, and usage guidelines.
## Conversion Details
- Converted using llama.cpp
- Original model downloaded from Hugging Face
- Multiple quantization levels provided for different use cases
- Conversion completed on: {datetime.now().strftime("%Y-%m-%d %H:%M:%S UTC")}
## License
This model inherits the license from the original model. Please check the original model's license for usage terms.
"""
model_card_path = os.path.join(output_dir, "README.md")
with open(model_card_path, "w", encoding="utf-8") as f:
f.write(model_card_content)
def _cleanup(self):
"""Clean up temporary files"""
if self.temp_dir and os.path.exists(self.temp_dir):
try:
shutil.rmtree(self.temp_dir)
logger.info("Cleaned up temporary files")
except Exception as e:
logger.warning(f"Failed to cleanup: {e}")
# Initialize converter
converter = SpaceGGUFConverter()
def get_current_status():
"""Get current conversion status"""
global current_status
return f"""**Status:** {current_status['status']}
**Progress:** {current_status['progress']}%
**Message:** {current_status['message']}
**Time:** {current_status.get('timestamp', 'N/A')}"""
def validate_model_interface(model_id: str):
"""Interface function for model validation"""
if not model_id.strip():
return "❌ Please enter a model ID"
valid, message = converter.validate_model(model_id.strip())
return message
def check_resources_interface():
"""Interface function for resource checking"""
resources = converter.check_resources()
if "error" in resources:
return f"❌ Error checking resources: {resources['error']}"
return f"""## πŸ’» System Resources
**Memory:**
- Total: {resources['memory_total']}
- Available: {resources['memory_available']} ({100-resources['memory_percent']:.1f}% free)
- Usage: {resources['memory_percent']:.1f}%
**Storage:**
- Total: {resources['disk_total']}
- Free: {resources['disk_free']} ({100-resources['disk_percent']:.1f}% free)
- Usage: {resources['disk_percent']:.1f}%
**Compute:**
- CPU Cores: {resources['cpu_count']}
- GPU Available: {'βœ… Yes' if resources['gpu_available'] else '❌ No'}
- GPU Memory: {resources['gpu_memory']}
**Status:** {'🟒 Good' if resources['memory_percent'] < 80 and resources['disk_percent'] < 80 else '🟑 Limited' if resources['memory_percent'] < 90 else 'πŸ”΄ Critical'}
"""
def convert_model_interface(
model_id: str,
output_repo: str,
hf_token: str,
quant_f16: bool,
quant_q4_0: bool,
quant_q4_1: bool,
quant_q5_0: bool,
quant_q5_1: bool,
quant_q8_0: bool,
private_repo: bool
):
"""Interface function for model conversion"""
# Validate inputs
if not model_id.strip():
return "❌ Please enter a model ID"
if not output_repo.strip():
return "❌ Please enter an output repository name"
if not hf_token.strip():
return "❌ Please enter your Hugging Face token"
# Collect selected quantizations
quantizations = []
if quant_f16:
quantizations.append("f16")
if quant_q4_0:
quantizations.append("q4_0")
if quant_q4_1:
quantizations.append("q4_1")
if quant_q5_0:
quantizations.append("q5_0")
if quant_q5_1:
quantizations.append("q5_1")
if quant_q8_0:
quantizations.append("q8_0")
if not quantizations:
return "❌ Please select at least one quantization type"
# Start conversion
success, message = converter.convert_model(
model_id.strip(),
output_repo.strip(),
quantizations,
hf_token.strip(),
private_repo
)
return message
# Create Gradio interface
def create_interface():
"""Create the Gradio interface"""
with gr.Blocks(
title="πŸ€— GGUF Model Converter",
theme=gr.themes.Soft(),
css="""
.status-box {
background-color: #f0f0f0;
padding: 10px;
border-radius: 5px;
margin: 10px 0;
}
"""
) as demo:
gr.Markdown("""
# πŸ€— GGUF Model Converter
Convert Hugging Face models to GGUF format for use with llama.cpp and other inference engines.
⚠️ **Important Notes:**
- Large models (>7B parameters) may take a long time and require significant memory
- Make sure you have sufficient disk space (models can be several GB)
- You need a Hugging Face token with write access to upload models
""")
with gr.Tab("πŸ”§ Model Converter"):
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("### πŸ“‹ Model Configuration")
model_id_input = gr.Textbox(
label="Model ID",
placeholder="e.g., microsoft/DialoGPT-small",
info="Hugging Face model repository ID"
)
validate_btn = gr.Button("βœ… Validate Model", variant="secondary")
validation_output = gr.Markdown()
output_repo_input = gr.Textbox(
label="Output Repository",
placeholder="e.g., your-username/model-name-GGUF",
info="Where to upload the converted model"
)
hf_token_input = gr.Textbox(
label="Hugging Face Token",
type="password",
placeholder="hf_xxxxxxxxxxxxxxxx",
info="Get your token from https://huggingface.co/settings/tokens"
)
private_repo_checkbox = gr.Checkbox(
label="Make repository private",
value=False
)
with gr.Column(scale=1):
gr.Markdown("### πŸŽ›οΈ Quantization Options")
quant_f16 = gr.Checkbox(label="F16 (Original precision)", value=True)
quant_q4_0 = gr.Checkbox(label="Q4_0 (Small, fast)", value=True)
quant_q4_1 = gr.Checkbox(label="Q4_1 (Small, balanced)", value=False)
quant_q5_0 = gr.Checkbox(label="Q5_0 (Medium, good quality)", value=False)
quant_q5_1 = gr.Checkbox(label="Q5_1 (Medium, better quality)", value=False)
quant_q8_0 = gr.Checkbox(label="Q8_0 (Large, high quality)", value=False)
gr.Markdown("### πŸš€ Start Conversion")
convert_btn = gr.Button("πŸ”„ Convert Model", variant="primary", size="lg")
conversion_output = gr.Markdown()
with gr.Tab("πŸ“Š System Status"):
gr.Markdown("### πŸ’» Resource Monitor")
refresh_btn = gr.Button("πŸ”„ Refresh Resources", variant="secondary")
resources_output = gr.Markdown()
gr.Markdown("### πŸ“ˆ Conversion Status")
status_btn = gr.Button("πŸ“Š Check Status", variant="secondary")
status_output = gr.Markdown(get_current_status())
with gr.Tab("πŸ“š Help & Examples"):
gr.Markdown("""
## 🎯 Quick Start Guide
1. **Enter Model ID**: Use any Hugging Face model ID (e.g., `microsoft/DialoGPT-small`)
2. **Validate Model**: Click "Validate Model" to check if the model is accessible
3. **Set Output Repository**: Choose where to upload (e.g., `your-username/model-name-GGUF`)
4. **Add HF Token**: Get your token from [Hugging Face Settings](https://huggingface.co/settings/tokens)
5. **Select Quantizations**: Choose which formats to create
6. **Convert**: Click "Convert Model" and wait for completion
## πŸ“ Quantization Guide
- **F16**: Original precision, largest file size, best quality
- **Q4_0**: 4-bit quantization, smallest size, good for most uses
- **Q4_1**: 4-bit with better quality than Q4_0
- **Q5_0/Q5_1**: 5-bit quantization, balance of size and quality
- **Q8_0**: 8-bit quantization, high quality, larger files
## πŸ’‘ Tips for Success
- Start with small models (< 1B parameters) to test
- Use Q4_0 for mobile/edge deployment
- Use Q8_0 or F16 for best quality
- Monitor system resources in the Status tab
- Large models may take 30+ minutes to convert
## πŸ”§ Supported Models
This converter works with most language models that use standard architectures:
- LLaMA, LLaMA 2, Code Llama
- Mistral, Mixtral
- Phi, Phi-2, Phi-3
- Qwen, ChatGLM
- And many others!
""")
# Event handlers
validate_btn.click(
fn=validate_model_interface,
inputs=[model_id_input],
outputs=[validation_output]
)
convert_btn.click(
fn=convert_model_interface,
inputs=[
model_id_input,
output_repo_input,
hf_token_input,
quant_f16,
quant_q4_0,
quant_q4_1,
quant_q5_0,
quant_q5_1,
quant_q8_0,
private_repo_checkbox
],
outputs=[conversion_output]
)
refresh_btn.click(
fn=check_resources_interface,
outputs=[resources_output]
)
status_btn.click(
fn=get_current_status,
outputs=[status_output]
)
# Auto-refresh status every 5 seconds during conversion
demo.load(fn=check_resources_interface, outputs=[resources_output])
return demo
# Launch the interface
if __name__ == "__main__":
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
)