Spaces:
Sleeping
Sleeping
File size: 25,692 Bytes
6f9845a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 |
#!/usr/bin/env python3
"""
Hugging Face Space: GGUF Model Converter
A web interface for converting Hugging Face models to GGUF format
This Space provides:
1. Web interface for model conversion
2. Progress tracking and logging
3. Automatic upload to Hugging Face
4. Resource monitoring
"""
import os
import sys
import subprocess
import shutil
import logging
import tempfile
import threading
import queue
import time
import psutil
import gc
from pathlib import Path
from typing import Optional, List, Dict, Any
from datetime import datetime
import gradio as gr
import torch
# Try importing required packages
try:
from huggingface_hub import HfApi, login, create_repo, snapshot_download
from transformers import AutoConfig, AutoTokenizer
HF_HUB_AVAILABLE = True
except ImportError:
HF_HUB_AVAILABLE = False
# Set up logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
# Global variables for progress tracking
conversion_progress = queue.Queue()
current_status = {"status": "idle", "progress": 0, "message": "Ready"}
class SpaceGGUFConverter:
def __init__(self):
"""Initialize the GGUF converter for Hugging Face Spaces"""
self.temp_dir = None
self.llama_cpp_dir = None
self.hf_token = None
def set_hf_token(self, token: str):
"""Set the Hugging Face token"""
self.hf_token = token
if token:
login(token=token)
return "β
HF Token set successfully!"
return "β Invalid token"
def update_progress(self, status: str, progress: int, message: str):
"""Update the global progress status"""
global current_status
current_status = {
"status": status,
"progress": progress,
"message": message,
"timestamp": datetime.now().strftime("%H:%M:%S")
}
conversion_progress.put(current_status.copy())
def check_resources(self) -> Dict[str, Any]:
"""Check available system resources"""
try:
memory = psutil.virtual_memory()
disk = psutil.disk_usage('/')
return {
"memory_total": f"{memory.total / (1024**3):.1f} GB",
"memory_available": f"{memory.available / (1024**3):.1f} GB",
"memory_percent": memory.percent,
"disk_total": f"{disk.total / (1024**3):.1f} GB",
"disk_free": f"{disk.free / (1024**3):.1f} GB",
"disk_percent": disk.percent,
"cpu_count": psutil.cpu_count(),
"gpu_available": torch.cuda.is_available(),
"gpu_memory": f"{torch.cuda.get_device_properties(0).total_memory / (1024**3):.1f} GB" if torch.cuda.is_available() else "N/A"
}
except Exception as e:
return {"error": str(e)}
def validate_model(self, model_id: str) -> tuple[bool, str]:
"""Validate if the model exists and get basic info"""
try:
if not HF_HUB_AVAILABLE:
return False, "β Required packages not available"
self.update_progress("validating", 10, f"Validating model: {model_id}")
# Try to get model config
config = AutoConfig.from_pretrained(model_id, trust_remote_code=False)
# Get approximate model size
try:
api = HfApi()
model_info = api.model_info(model_id)
# Calculate approximate size from number of parameters
if hasattr(config, 'num_parameters'):
params = config.num_parameters()
elif hasattr(config, 'n_params'):
params = config.n_params
else:
# Estimate from model files
params = "Unknown"
estimated_size = f"~{params/1e9:.1f}B parameters" if isinstance(params, (int, float)) else params
return True, f"β
Valid model found!\nParameters: {estimated_size}\nArchitecture: {config.model_type if hasattr(config, 'model_type') else 'Unknown'}"
except Exception as e:
return True, f"β
Model accessible (size estimation failed: {str(e)})"
except Exception as e:
return False, f"β Model validation failed: {str(e)}"
def setup_environment(self) -> bool:
"""Set up the environment for GGUF conversion"""
try:
self.update_progress("setup", 20, "Setting up conversion environment...")
# Create temporary directory
self.temp_dir = tempfile.mkdtemp(prefix="gguf_space_")
logger.info(f"Created temporary directory: {self.temp_dir}")
# Clone llama.cpp
self.llama_cpp_dir = os.path.join(self.temp_dir, "llama.cpp")
self.update_progress("setup", 30, "Downloading llama.cpp...")
result = subprocess.run([
"git", "clone", "--depth", "1",
"https://github.com/ggerganov/llama.cpp.git",
self.llama_cpp_dir
], capture_output=True, text=True)
if result.returncode != 0:
raise Exception(f"Failed to clone llama.cpp: {result.stderr}")
# Build llama.cpp
self.update_progress("setup", 50, "Building llama.cpp (this may take a few minutes)...")
original_dir = os.getcwd()
try:
os.chdir(self.llama_cpp_dir)
# Configure with CMake
configure_result = subprocess.run([
"cmake", "-S", ".", "-B", "build",
"-DCMAKE_BUILD_TYPE=Release",
"-DLLAMA_BUILD_TESTS=OFF",
"-DLLAMA_BUILD_EXAMPLES=ON"
], capture_output=True, text=True)
if configure_result.returncode != 0:
raise Exception(f"CMake configure failed: {configure_result.stderr}")
# Build
build_result = subprocess.run([
"cmake", "--build", "build", "--config", "Release", "-j"
], capture_output=True, text=True)
if build_result.returncode != 0:
raise Exception(f"CMake build failed: {build_result.stderr}")
finally:
os.chdir(original_dir)
self.update_progress("setup", 70, "Environment setup complete!")
return True
except Exception as e:
self.update_progress("error", 0, f"Setup failed: {str(e)}")
logger.error(f"Environment setup failed: {e}")
return False
def convert_model(
self,
model_id: str,
output_repo: str,
quantizations: List[str],
hf_token: str,
private_repo: bool = False
) -> tuple[bool, str]:
"""Convert model to GGUF format"""
try:
if not hf_token:
return False, "β Hugging Face token is required"
# Set token
self.set_hf_token(hf_token)
# Validate model first
valid, validation_msg = self.validate_model(model_id)
if not valid:
return False, validation_msg
# Check resources
resources = self.check_resources()
if resources.get("memory_percent", 100) > 90:
return False, "β Insufficient memory available (>90% used)"
# Setup environment
if not self.setup_environment():
return False, "β Failed to setup environment"
# Download model
self.update_progress("downloading", 80, f"Downloading model: {model_id}")
model_dir = os.path.join(self.temp_dir, "original_model")
try:
snapshot_download(
repo_id=model_id,
local_dir=model_dir,
token=hf_token
)
except Exception as e:
return False, f"β Failed to download model: {str(e)}"
# Convert to GGUF
self.update_progress("converting", 85, "Converting to GGUF format...")
gguf_dir = os.path.join(self.temp_dir, "gguf_output")
os.makedirs(gguf_dir, exist_ok=True)
# Convert to f16 first
convert_script = os.path.join(self.llama_cpp_dir, "convert_hf_to_gguf.py")
f16_output = os.path.join(gguf_dir, "model-f16.gguf")
convert_result = subprocess.run([
sys.executable, convert_script,
model_dir,
"--outfile", f16_output,
"--outtype", "f16"
], capture_output=True, text=True)
if convert_result.returncode != 0:
return False, f"β F16 conversion failed: {convert_result.stderr}"
# Find quantize binary
quantize_binary = self._find_quantize_binary()
if not quantize_binary:
return False, "β Could not find llama-quantize binary"
# Create quantizations
successful_quants = ["f16"]
for i, quant in enumerate(quantizations):
if quant == "f16":
continue
progress = 85 + (10 * i / len(quantizations))
self.update_progress("converting", int(progress), f"Creating {quant} quantization...")
quant_output = os.path.join(gguf_dir, f"model-{quant}.gguf")
quant_result = subprocess.run([
quantize_binary,
f16_output,
quant_output,
quant.upper()
], capture_output=True, text=True)
if quant_result.returncode == 0:
successful_quants.append(quant)
else:
logger.warning(f"Failed to create {quant} quantization: {quant_result.stderr}")
# Create model card
self._create_model_card(model_id, gguf_dir, successful_quants)
# Upload to Hugging Face
self.update_progress("uploading", 95, f"Uploading to {output_repo}...")
try:
api = HfApi(token=hf_token)
create_repo(output_repo, private=private_repo, exist_ok=True, token=hf_token)
for file_path in Path(gguf_dir).rglob("*"):
if file_path.is_file():
relative_path = file_path.relative_to(gguf_dir)
api.upload_file(
path_or_fileobj=str(file_path),
path_in_repo=str(relative_path),
repo_id=output_repo,
repo_type="model",
token=hf_token
)
except Exception as e:
return False, f"β Upload failed: {str(e)}"
self.update_progress("complete", 100, "Conversion completed successfully!")
return True, f"""β
Conversion completed successfully!
π **Results:**
- Successfully created: {', '.join(successful_quants)} quantizations
- Uploaded to: https://huggingface.co/{output_repo}
- Files created: {len(successful_quants)} GGUF files + README.md
π **Links:**
- View model: https://huggingface.co/{output_repo}
- Download files: https://huggingface.co/{output_repo}/tree/main
"""
except Exception as e:
self.update_progress("error", 0, f"Conversion failed: {str(e)}")
return False, f"β Conversion failed: {str(e)}"
finally:
# Cleanup
self._cleanup()
gc.collect()
def _find_quantize_binary(self) -> Optional[str]:
"""Find the llama-quantize binary"""
possible_locations = [
os.path.join(self.llama_cpp_dir, "build", "bin", "llama-quantize"),
os.path.join(self.llama_cpp_dir, "build", "llama-quantize"),
os.path.join(self.llama_cpp_dir, "build", "llama-quantize.exe"),
os.path.join(self.llama_cpp_dir, "build", "bin", "llama-quantize.exe")
]
for location in possible_locations:
if os.path.exists(location):
return location
return None
def _create_model_card(self, original_model_id: str, output_dir: str, quantizations: List[str]):
"""Create a model card for the GGUF model"""
quant_table = []
for quant in quantizations:
filename = f"model-{quant}.gguf"
if quant == "f16":
desc = "Original precision (largest file)"
elif "q4" in quant:
desc = "4-bit quantization (good balance)"
elif "q5" in quant:
desc = "5-bit quantization (higher quality)"
elif "q8" in quant:
desc = "8-bit quantization (high quality)"
else:
desc = "Quantized version"
quant_table.append(f"| {filename} | {quant.upper()} | {desc} |")
model_card_content = f"""---
language:
- en
library_name: gguf
base_model: {original_model_id}
tags:
- gguf
- quantized
- llama.cpp
- converted
license: apache-2.0
---
# {original_model_id} - GGUF
This repository contains GGUF quantizations of [{original_model_id}](https://huggingface.co/{original_model_id}).
**Converted using [HF GGUF Converter Space](https://huggingface.co/spaces/)**
## About GGUF
GGUF is a quantization method that allows you to run large language models on consumer hardware by reducing the precision of the model weights.
## Files
| Filename | Quant type | Description |
| -------- | ---------- | ----------- |
{chr(10).join(quant_table)}
## Usage
You can use these models with llama.cpp or any other GGUF-compatible inference engine.
### llama.cpp
```bash
./llama-cli -m model-q4_0.gguf -p "Your prompt here"
```
### Python (using llama-cpp-python)
```python
from llama_cpp import Llama
llm = Llama(model_path="model-q4_0.gguf")
output = llm("Your prompt here", max_tokens=512)
print(output['choices'][0]['text'])
```
## Original Model
This is a quantized version of [{original_model_id}](https://huggingface.co/{original_model_id}). Please refer to the original model card for more information about the model's capabilities, training data, and usage guidelines.
## Conversion Details
- Converted using llama.cpp
- Original model downloaded from Hugging Face
- Multiple quantization levels provided for different use cases
- Conversion completed on: {datetime.now().strftime("%Y-%m-%d %H:%M:%S UTC")}
## License
This model inherits the license from the original model. Please check the original model's license for usage terms.
"""
model_card_path = os.path.join(output_dir, "README.md")
with open(model_card_path, "w", encoding="utf-8") as f:
f.write(model_card_content)
def _cleanup(self):
"""Clean up temporary files"""
if self.temp_dir and os.path.exists(self.temp_dir):
try:
shutil.rmtree(self.temp_dir)
logger.info("Cleaned up temporary files")
except Exception as e:
logger.warning(f"Failed to cleanup: {e}")
# Initialize converter
converter = SpaceGGUFConverter()
def get_current_status():
"""Get current conversion status"""
global current_status
return f"""**Status:** {current_status['status']}
**Progress:** {current_status['progress']}%
**Message:** {current_status['message']}
**Time:** {current_status.get('timestamp', 'N/A')}"""
def validate_model_interface(model_id: str):
"""Interface function for model validation"""
if not model_id.strip():
return "β Please enter a model ID"
valid, message = converter.validate_model(model_id.strip())
return message
def check_resources_interface():
"""Interface function for resource checking"""
resources = converter.check_resources()
if "error" in resources:
return f"β Error checking resources: {resources['error']}"
return f"""## π» System Resources
**Memory:**
- Total: {resources['memory_total']}
- Available: {resources['memory_available']} ({100-resources['memory_percent']:.1f}% free)
- Usage: {resources['memory_percent']:.1f}%
**Storage:**
- Total: {resources['disk_total']}
- Free: {resources['disk_free']} ({100-resources['disk_percent']:.1f}% free)
- Usage: {resources['disk_percent']:.1f}%
**Compute:**
- CPU Cores: {resources['cpu_count']}
- GPU Available: {'β
Yes' if resources['gpu_available'] else 'β No'}
- GPU Memory: {resources['gpu_memory']}
**Status:** {'π’ Good' if resources['memory_percent'] < 80 and resources['disk_percent'] < 80 else 'π‘ Limited' if resources['memory_percent'] < 90 else 'π΄ Critical'}
"""
def convert_model_interface(
model_id: str,
output_repo: str,
hf_token: str,
quant_f16: bool,
quant_q4_0: bool,
quant_q4_1: bool,
quant_q5_0: bool,
quant_q5_1: bool,
quant_q8_0: bool,
private_repo: bool
):
"""Interface function for model conversion"""
# Validate inputs
if not model_id.strip():
return "β Please enter a model ID"
if not output_repo.strip():
return "β Please enter an output repository name"
if not hf_token.strip():
return "β Please enter your Hugging Face token"
# Collect selected quantizations
quantizations = []
if quant_f16:
quantizations.append("f16")
if quant_q4_0:
quantizations.append("q4_0")
if quant_q4_1:
quantizations.append("q4_1")
if quant_q5_0:
quantizations.append("q5_0")
if quant_q5_1:
quantizations.append("q5_1")
if quant_q8_0:
quantizations.append("q8_0")
if not quantizations:
return "β Please select at least one quantization type"
# Start conversion
success, message = converter.convert_model(
model_id.strip(),
output_repo.strip(),
quantizations,
hf_token.strip(),
private_repo
)
return message
# Create Gradio interface
def create_interface():
"""Create the Gradio interface"""
with gr.Blocks(
title="π€ GGUF Model Converter",
theme=gr.themes.Soft(),
css="""
.status-box {
background-color: #f0f0f0;
padding: 10px;
border-radius: 5px;
margin: 10px 0;
}
"""
) as demo:
gr.Markdown("""
# π€ GGUF Model Converter
Convert Hugging Face models to GGUF format for use with llama.cpp and other inference engines.
β οΈ **Important Notes:**
- Large models (>7B parameters) may take a long time and require significant memory
- Make sure you have sufficient disk space (models can be several GB)
- You need a Hugging Face token with write access to upload models
""")
with gr.Tab("π§ Model Converter"):
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("### π Model Configuration")
model_id_input = gr.Textbox(
label="Model ID",
placeholder="e.g., microsoft/DialoGPT-small",
info="Hugging Face model repository ID"
)
validate_btn = gr.Button("β
Validate Model", variant="secondary")
validation_output = gr.Markdown()
output_repo_input = gr.Textbox(
label="Output Repository",
placeholder="e.g., your-username/model-name-GGUF",
info="Where to upload the converted model"
)
hf_token_input = gr.Textbox(
label="Hugging Face Token",
type="password",
placeholder="hf_xxxxxxxxxxxxxxxx",
info="Get your token from https://huggingface.co/settings/tokens"
)
private_repo_checkbox = gr.Checkbox(
label="Make repository private",
value=False
)
with gr.Column(scale=1):
gr.Markdown("### ποΈ Quantization Options")
quant_f16 = gr.Checkbox(label="F16 (Original precision)", value=True)
quant_q4_0 = gr.Checkbox(label="Q4_0 (Small, fast)", value=True)
quant_q4_1 = gr.Checkbox(label="Q4_1 (Small, balanced)", value=False)
quant_q5_0 = gr.Checkbox(label="Q5_0 (Medium, good quality)", value=False)
quant_q5_1 = gr.Checkbox(label="Q5_1 (Medium, better quality)", value=False)
quant_q8_0 = gr.Checkbox(label="Q8_0 (Large, high quality)", value=False)
gr.Markdown("### π Start Conversion")
convert_btn = gr.Button("π Convert Model", variant="primary", size="lg")
conversion_output = gr.Markdown()
with gr.Tab("π System Status"):
gr.Markdown("### π» Resource Monitor")
refresh_btn = gr.Button("π Refresh Resources", variant="secondary")
resources_output = gr.Markdown()
gr.Markdown("### π Conversion Status")
status_btn = gr.Button("π Check Status", variant="secondary")
status_output = gr.Markdown(get_current_status())
with gr.Tab("π Help & Examples"):
gr.Markdown("""
## π― Quick Start Guide
1. **Enter Model ID**: Use any Hugging Face model ID (e.g., `microsoft/DialoGPT-small`)
2. **Validate Model**: Click "Validate Model" to check if the model is accessible
3. **Set Output Repository**: Choose where to upload (e.g., `your-username/model-name-GGUF`)
4. **Add HF Token**: Get your token from [Hugging Face Settings](https://huggingface.co/settings/tokens)
5. **Select Quantizations**: Choose which formats to create
6. **Convert**: Click "Convert Model" and wait for completion
## π Quantization Guide
- **F16**: Original precision, largest file size, best quality
- **Q4_0**: 4-bit quantization, smallest size, good for most uses
- **Q4_1**: 4-bit with better quality than Q4_0
- **Q5_0/Q5_1**: 5-bit quantization, balance of size and quality
- **Q8_0**: 8-bit quantization, high quality, larger files
## π‘ Tips for Success
- Start with small models (< 1B parameters) to test
- Use Q4_0 for mobile/edge deployment
- Use Q8_0 or F16 for best quality
- Monitor system resources in the Status tab
- Large models may take 30+ minutes to convert
## π§ Supported Models
This converter works with most language models that use standard architectures:
- LLaMA, LLaMA 2, Code Llama
- Mistral, Mixtral
- Phi, Phi-2, Phi-3
- Qwen, ChatGLM
- And many others!
""")
# Event handlers
validate_btn.click(
fn=validate_model_interface,
inputs=[model_id_input],
outputs=[validation_output]
)
convert_btn.click(
fn=convert_model_interface,
inputs=[
model_id_input,
output_repo_input,
hf_token_input,
quant_f16,
quant_q4_0,
quant_q4_1,
quant_q5_0,
quant_q5_1,
quant_q8_0,
private_repo_checkbox
],
outputs=[conversion_output]
)
refresh_btn.click(
fn=check_resources_interface,
outputs=[resources_output]
)
status_btn.click(
fn=get_current_status,
outputs=[status_output]
)
# Auto-refresh status every 5 seconds during conversion
demo.load(fn=check_resources_interface, outputs=[resources_output])
return demo
# Launch the interface
if __name__ == "__main__":
demo = create_interface()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True
) |