File size: 7,107 Bytes
f0b25f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import gradio as gr
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, AutoModelForSeq2SeqLM
import torch
import numpy as np

# Initialize models
try:
    # Text Generation with TinyLlama
    generator_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
    tokenizer = AutoTokenizer.from_pretrained(generator_name)
    generator_model = AutoModelForCausalLM.from_pretrained(
        generator_name,
        torch_dtype=torch.float16,
        device_map="auto"
    )
    
    # Text Summarization
    summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
    
    # Sentiment Analysis
    sentiment_analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
    
    # Question Answering
    qa_model = pipeline("question-answering", model="distilbert-base-cased-distilled-squad")
    
    # Translation (English to multiple languages)
    translator = pipeline("translation", model="Helsinki-NLP/opus-mt-en-ROMANCE")
    
except Exception as e:
    print(f"Error loading models: {str(e)}")

def generate_text(prompt, max_length=100, temperature=0.7):
    """Generate text based on a prompt using TinyLlama"""
    try:
        # Format the prompt for chat
        formatted_prompt = f"<human>: {prompt}\n<assistant>:"
        
        # Generate text
        inputs = tokenizer(formatted_prompt, return_tensors="pt").to(generator_model.device)
        outputs = generator_model.generate(
            **inputs,
            max_length=max_length,
            temperature=temperature,
            do_sample=True,
            top_p=0.95,
            top_k=50,
            repetition_penalty=1.2,
            num_return_sequences=1,
            pad_token_id=tokenizer.eos_token_id
        )
        
        # Decode and clean up the response
        generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
        # Remove the original prompt and clean up
        response = generated_text.split("<assistant>:")[-1].strip()
        return response
    except Exception as e:
        return f"Error in text generation: {str(e)}"

def summarize_text(text, max_length=130, min_length=30):
    """Summarize long text"""
    try:
        summary = summarizer(
            text,
            max_length=max_length,
            min_length=min_length,
            do_sample=False
        )
        return summary[0]['summary_text']
    except Exception as e:
        return f"Error in summarization: {str(e)}"

def analyze_sentiment(text):
    """Analyze sentiment of text"""
    try:
        result = sentiment_analyzer(text)
        return {
            "Sentiment": result[0]['label'],
            "Confidence": f"{result[0]['score']:.2%}"
        }
    except Exception as e:
        return {"error": str(e)}

def answer_question(context, question):
    """Answer questions based on context"""
    try:
        result = qa_model(
            question=question,
            context=context
        )
        return {
            "Answer": result['answer'],
            "Confidence": f"{result['score']:.2%}"
        }
    except Exception as e:
        return {"error": str(e)}

def translate_text(text, target_lang):
    """Translate text to target language"""
    try:
        translation = translator(
            text,
            src_lang="en",
            tgt_lang=target_lang
        )
        return translation[0]['translation_text']
    except Exception as e:
        return f"Error in translation: {str(e)}"

# Create the Gradio interface
with gr.Blocks(title="Advanced NLP") as demo:
    gr.Markdown("""
    # 🤖 Advanced NLP 
    ## Multi-task Language Model Application
    
    This application demonstrates various Natural Language Processing capabilities:
    - Text Generation (TinyLlama)
    - Text Summarization (BART)
    - Sentiment Analysis (DistilBERT)
    - Question Answering
    - Multi-language Translation
    
    Try out different tasks using the options below!
    """)
    
    with gr.Tab("Text Generation"):
        with gr.Row():
            with gr.Column():
                gen_input = gr.Textbox(label="Enter your prompt", lines=3)
                gen_length = gr.Slider(minimum=10, maximum=200, value=100, step=10, label="Maximum Length")
                gen_temp = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature")
                gen_button = gr.Button("Generate")
            with gr.Column():
                gen_output = gr.Textbox(label="Generated Text", lines=5)
    
    with gr.Tab("Text Summarization"):
        with gr.Row():
            with gr.Column():
                sum_input = gr.Textbox(label="Enter text to summarize", lines=8)
                sum_max_length = gr.Slider(minimum=50, maximum=200, value=130, step=10, label="Maximum Summary Length")
                sum_min_length = gr.Slider(minimum=10, maximum=100, value=30, step=5, label="Minimum Summary Length")
                sum_button = gr.Button("Summarize")
            with gr.Column():
                sum_output = gr.Textbox(label="Summary", lines=4)
    
    with gr.Tab("Sentiment Analysis"):
        with gr.Row():
            with gr.Column():
                sent_input = gr.Textbox(label="Enter text for sentiment analysis", lines=3)
                sent_button = gr.Button("Analyze Sentiment")
            with gr.Column():
                sent_output = gr.JSON(label="Sentiment Analysis Results")
    
    with gr.Tab("Question Answering"):
        with gr.Row():
            with gr.Column():
                qa_context = gr.Textbox(label="Enter the context", lines=6)
                qa_question = gr.Textbox(label="Enter your question", lines=2)
                qa_button = gr.Button("Get Answer")
            with gr.Column():
                qa_output = gr.JSON(label="Answer")
    
    with gr.Tab("Translation"):
        with gr.Row():
            with gr.Column():
                trans_input = gr.Textbox(label="Enter text to translate (English)", lines=3)
                trans_lang = gr.Dropdown(
                    choices=["es", "fr", "it", "pt", "ro"],
                    value="es",
                    label="Target Language"
                )
                trans_button = gr.Button("Translate")
            with gr.Column():
                trans_output = gr.Textbox(label="Translated Text", lines=3)
    
    # Set up event handlers
    gen_button.click(
        fn=generate_text,
        inputs=[gen_input, gen_length, gen_temp],
        outputs=gen_output
    )
    
    sum_button.click(
        fn=summarize_text,
        inputs=[sum_input, sum_max_length, sum_min_length],
        outputs=sum_output
    )
    
    sent_button.click(
        fn=analyze_sentiment,
        inputs=sent_input,
        outputs=sent_output
    )
    
    qa_button.click(
        fn=answer_question,
        inputs=[qa_context, qa_question],
        outputs=qa_output
    )
    
    trans_button.click(
        fn=translate_text,
        inputs=[trans_input, trans_lang],
        outputs=trans_output
    )

if __name__ == "__main__":
    demo.launch(share=True)