Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM, AutoModelForSeq2SeqLM
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
# Initialize models
|
7 |
+
try:
|
8 |
+
# Text Generation with TinyLlama
|
9 |
+
generator_name = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
|
10 |
+
tokenizer = AutoTokenizer.from_pretrained(generator_name)
|
11 |
+
generator_model = AutoModelForCausalLM.from_pretrained(
|
12 |
+
generator_name,
|
13 |
+
torch_dtype=torch.float16,
|
14 |
+
device_map="auto"
|
15 |
+
)
|
16 |
+
|
17 |
+
# Text Summarization
|
18 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
19 |
+
|
20 |
+
# Sentiment Analysis
|
21 |
+
sentiment_analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
|
22 |
+
|
23 |
+
# Question Answering
|
24 |
+
qa_model = pipeline("question-answering", model="distilbert-base-cased-distilled-squad")
|
25 |
+
|
26 |
+
# Translation (English to multiple languages)
|
27 |
+
translator = pipeline("translation", model="Helsinki-NLP/opus-mt-en-ROMANCE")
|
28 |
+
|
29 |
+
except Exception as e:
|
30 |
+
print(f"Error loading models: {str(e)}")
|
31 |
+
|
32 |
+
def generate_text(prompt, max_length=100, temperature=0.7):
|
33 |
+
"""Generate text based on a prompt using TinyLlama"""
|
34 |
+
try:
|
35 |
+
# Format the prompt for chat
|
36 |
+
formatted_prompt = f"<human>: {prompt}\n<assistant>:"
|
37 |
+
|
38 |
+
# Generate text
|
39 |
+
inputs = tokenizer(formatted_prompt, return_tensors="pt").to(generator_model.device)
|
40 |
+
outputs = generator_model.generate(
|
41 |
+
**inputs,
|
42 |
+
max_length=max_length,
|
43 |
+
temperature=temperature,
|
44 |
+
do_sample=True,
|
45 |
+
top_p=0.95,
|
46 |
+
top_k=50,
|
47 |
+
repetition_penalty=1.2,
|
48 |
+
num_return_sequences=1,
|
49 |
+
pad_token_id=tokenizer.eos_token_id
|
50 |
+
)
|
51 |
+
|
52 |
+
# Decode and clean up the response
|
53 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
54 |
+
# Remove the original prompt and clean up
|
55 |
+
response = generated_text.split("<assistant>:")[-1].strip()
|
56 |
+
return response
|
57 |
+
except Exception as e:
|
58 |
+
return f"Error in text generation: {str(e)}"
|
59 |
+
|
60 |
+
def summarize_text(text, max_length=130, min_length=30):
|
61 |
+
"""Summarize long text"""
|
62 |
+
try:
|
63 |
+
summary = summarizer(
|
64 |
+
text,
|
65 |
+
max_length=max_length,
|
66 |
+
min_length=min_length,
|
67 |
+
do_sample=False
|
68 |
+
)
|
69 |
+
return summary[0]['summary_text']
|
70 |
+
except Exception as e:
|
71 |
+
return f"Error in summarization: {str(e)}"
|
72 |
+
|
73 |
+
def analyze_sentiment(text):
|
74 |
+
"""Analyze sentiment of text"""
|
75 |
+
try:
|
76 |
+
result = sentiment_analyzer(text)
|
77 |
+
return {
|
78 |
+
"Sentiment": result[0]['label'],
|
79 |
+
"Confidence": f"{result[0]['score']:.2%}"
|
80 |
+
}
|
81 |
+
except Exception as e:
|
82 |
+
return {"error": str(e)}
|
83 |
+
|
84 |
+
def answer_question(context, question):
|
85 |
+
"""Answer questions based on context"""
|
86 |
+
try:
|
87 |
+
result = qa_model(
|
88 |
+
question=question,
|
89 |
+
context=context
|
90 |
+
)
|
91 |
+
return {
|
92 |
+
"Answer": result['answer'],
|
93 |
+
"Confidence": f"{result['score']:.2%}"
|
94 |
+
}
|
95 |
+
except Exception as e:
|
96 |
+
return {"error": str(e)}
|
97 |
+
|
98 |
+
def translate_text(text, target_lang):
|
99 |
+
"""Translate text to target language"""
|
100 |
+
try:
|
101 |
+
translation = translator(
|
102 |
+
text,
|
103 |
+
src_lang="en",
|
104 |
+
tgt_lang=target_lang
|
105 |
+
)
|
106 |
+
return translation[0]['translation_text']
|
107 |
+
except Exception as e:
|
108 |
+
return f"Error in translation: {str(e)}"
|
109 |
+
|
110 |
+
# Create the Gradio interface
|
111 |
+
with gr.Blocks(title="Advanced NLP") as demo:
|
112 |
+
gr.Markdown("""
|
113 |
+
# 🤖 Advanced NLP
|
114 |
+
## Multi-task Language Model Application
|
115 |
+
|
116 |
+
This application demonstrates various Natural Language Processing capabilities:
|
117 |
+
- Text Generation (TinyLlama)
|
118 |
+
- Text Summarization (BART)
|
119 |
+
- Sentiment Analysis (DistilBERT)
|
120 |
+
- Question Answering
|
121 |
+
- Multi-language Translation
|
122 |
+
|
123 |
+
Try out different tasks using the options below!
|
124 |
+
""")
|
125 |
+
|
126 |
+
with gr.Tab("Text Generation"):
|
127 |
+
with gr.Row():
|
128 |
+
with gr.Column():
|
129 |
+
gen_input = gr.Textbox(label="Enter your prompt", lines=3)
|
130 |
+
gen_length = gr.Slider(minimum=10, maximum=200, value=100, step=10, label="Maximum Length")
|
131 |
+
gen_temp = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature")
|
132 |
+
gen_button = gr.Button("Generate")
|
133 |
+
with gr.Column():
|
134 |
+
gen_output = gr.Textbox(label="Generated Text", lines=5)
|
135 |
+
|
136 |
+
with gr.Tab("Text Summarization"):
|
137 |
+
with gr.Row():
|
138 |
+
with gr.Column():
|
139 |
+
sum_input = gr.Textbox(label="Enter text to summarize", lines=8)
|
140 |
+
sum_max_length = gr.Slider(minimum=50, maximum=200, value=130, step=10, label="Maximum Summary Length")
|
141 |
+
sum_min_length = gr.Slider(minimum=10, maximum=100, value=30, step=5, label="Minimum Summary Length")
|
142 |
+
sum_button = gr.Button("Summarize")
|
143 |
+
with gr.Column():
|
144 |
+
sum_output = gr.Textbox(label="Summary", lines=4)
|
145 |
+
|
146 |
+
with gr.Tab("Sentiment Analysis"):
|
147 |
+
with gr.Row():
|
148 |
+
with gr.Column():
|
149 |
+
sent_input = gr.Textbox(label="Enter text for sentiment analysis", lines=3)
|
150 |
+
sent_button = gr.Button("Analyze Sentiment")
|
151 |
+
with gr.Column():
|
152 |
+
sent_output = gr.JSON(label="Sentiment Analysis Results")
|
153 |
+
|
154 |
+
with gr.Tab("Question Answering"):
|
155 |
+
with gr.Row():
|
156 |
+
with gr.Column():
|
157 |
+
qa_context = gr.Textbox(label="Enter the context", lines=6)
|
158 |
+
qa_question = gr.Textbox(label="Enter your question", lines=2)
|
159 |
+
qa_button = gr.Button("Get Answer")
|
160 |
+
with gr.Column():
|
161 |
+
qa_output = gr.JSON(label="Answer")
|
162 |
+
|
163 |
+
with gr.Tab("Translation"):
|
164 |
+
with gr.Row():
|
165 |
+
with gr.Column():
|
166 |
+
trans_input = gr.Textbox(label="Enter text to translate (English)", lines=3)
|
167 |
+
trans_lang = gr.Dropdown(
|
168 |
+
choices=["es", "fr", "it", "pt", "ro"],
|
169 |
+
value="es",
|
170 |
+
label="Target Language"
|
171 |
+
)
|
172 |
+
trans_button = gr.Button("Translate")
|
173 |
+
with gr.Column():
|
174 |
+
trans_output = gr.Textbox(label="Translated Text", lines=3)
|
175 |
+
|
176 |
+
# Set up event handlers
|
177 |
+
gen_button.click(
|
178 |
+
fn=generate_text,
|
179 |
+
inputs=[gen_input, gen_length, gen_temp],
|
180 |
+
outputs=gen_output
|
181 |
+
)
|
182 |
+
|
183 |
+
sum_button.click(
|
184 |
+
fn=summarize_text,
|
185 |
+
inputs=[sum_input, sum_max_length, sum_min_length],
|
186 |
+
outputs=sum_output
|
187 |
+
)
|
188 |
+
|
189 |
+
sent_button.click(
|
190 |
+
fn=analyze_sentiment,
|
191 |
+
inputs=sent_input,
|
192 |
+
outputs=sent_output
|
193 |
+
)
|
194 |
+
|
195 |
+
qa_button.click(
|
196 |
+
fn=answer_question,
|
197 |
+
inputs=[qa_context, qa_question],
|
198 |
+
outputs=qa_output
|
199 |
+
)
|
200 |
+
|
201 |
+
trans_button.click(
|
202 |
+
fn=translate_text,
|
203 |
+
inputs=[trans_input, trans_lang],
|
204 |
+
outputs=trans_output
|
205 |
+
)
|
206 |
+
|
207 |
+
if __name__ == "__main__":
|
208 |
+
demo.launch(share=True)
|