Spaces:
Runtime error
Runtime error
Update space
Browse files
app.py
CHANGED
@@ -1,65 +1,24 @@
|
|
1 |
-
# import torch
|
2 |
-
# import gradio as gr
|
3 |
-
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
-
|
5 |
-
# # Load the model and tokenizer
|
6 |
-
# MODEL_NAME = "sarvamai/sarvam-1"
|
7 |
-
# tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
8 |
-
# model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16, device_map="auto")
|
9 |
-
# model.eval()
|
10 |
-
|
11 |
-
# def respond(message, history, max_tokens, temperature, top_p):
|
12 |
-
# # Convert chat history to format
|
13 |
-
# messages = [{"role": "system", "content": "You are a friendly AI assistant."}]
|
14 |
-
# for val in history:
|
15 |
-
# if val[0]:
|
16 |
-
# messages.append({"role": "user", "content": val[0]})
|
17 |
-
# if val[1]:
|
18 |
-
# messages.append({"role": "assistant", "content": val[1]})
|
19 |
-
# messages.append({"role": "user", "content": message})
|
20 |
-
|
21 |
-
# # Tokenize and generate response
|
22 |
-
# inputs = tokenizer.apply_chat_template(messages, tokenize=False)
|
23 |
-
# input_tokens = tokenizer(inputs, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
|
24 |
-
|
25 |
-
# output_tokens = model.generate(
|
26 |
-
# **input_tokens,
|
27 |
-
# max_new_tokens=max_tokens,
|
28 |
-
# temperature=temperature,
|
29 |
-
# top_p=top_p,
|
30 |
-
# pad_token_id=tokenizer.pad_token_id,
|
31 |
-
# eos_token_id=tokenizer.eos_token_id,
|
32 |
-
# )
|
33 |
-
|
34 |
-
# response = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
|
35 |
-
# return response
|
36 |
-
|
37 |
-
# # Define Gradio Chat Interface
|
38 |
-
# demo = gr.ChatInterface(
|
39 |
-
# fn=respond,
|
40 |
-
# additional_inputs=[
|
41 |
-
# gr.Slider(minimum=1, maximum=1024, value=256, step=1, label="Max Tokens"),
|
42 |
-
# gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
|
43 |
-
# gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
|
44 |
-
# ],
|
45 |
-
# title="Sarvam-1 Chat Interface",
|
46 |
-
# description="Chat with the Sarvam-1 language model"
|
47 |
-
# )
|
48 |
-
|
49 |
-
# if __name__ == "__main__":
|
50 |
-
# demo.launch()
|
51 |
-
|
52 |
import torch
|
53 |
import gradio as gr
|
54 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
55 |
|
56 |
-
# Load the model and tokenizer
|
57 |
MODEL_NAME = "sarvamai/sarvam-1"
|
58 |
-
tokenizer =
|
59 |
-
model =
|
60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
def respond(message, history, max_tokens, temperature, top_p):
|
|
|
|
|
|
|
|
|
63 |
# Convert chat history to format
|
64 |
messages = [{"role": "system", "content": "You are a friendly AI assistant."}]
|
65 |
for val in history:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
|
5 |
+
# Load the model and tokenizer only once at startup
|
6 |
MODEL_NAME = "sarvamai/sarvam-1"
|
7 |
+
tokenizer = None
|
8 |
+
model = None
|
9 |
+
|
10 |
+
def load_model():
|
11 |
+
global tokenizer, model
|
12 |
+
if tokenizer is None or model is None:
|
13 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
14 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16, device_map="auto")
|
15 |
+
model.eval()
|
16 |
|
17 |
def respond(message, history, max_tokens, temperature, top_p):
|
18 |
+
global tokenizer, model
|
19 |
+
# Ensure model is loaded
|
20 |
+
load_model()
|
21 |
+
|
22 |
# Convert chat history to format
|
23 |
messages = [{"role": "system", "content": "You are a friendly AI assistant."}]
|
24 |
for val in history:
|