Spaces:
Runtime error
Runtime error
Update space
Browse files
app.py
CHANGED
@@ -1,141 +1,65 @@
|
|
1 |
-
#
|
2 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
#
|
5 |
-
#
|
6 |
-
# # """
|
7 |
-
# # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
-
|
9 |
-
|
10 |
-
# # def respond(
|
11 |
-
# # message,
|
12 |
-
# # history: list[tuple[str, str]],
|
13 |
-
# # system_message,
|
14 |
-
# # max_tokens,
|
15 |
-
# # temperature,
|
16 |
-
# # top_p,
|
17 |
-
# # ):
|
18 |
-
# # messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
# # for val in history:
|
21 |
-
# # if val[0]:
|
22 |
-
# # messages.append({"role": "user", "content": val[0]})
|
23 |
-
# # if val[1]:
|
24 |
-
# # messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
-
# # messages.append({"role": "user", "content": message})
|
27 |
-
|
28 |
-
# # response = ""
|
29 |
-
|
30 |
-
# # for message in client.chat_completion(
|
31 |
-
# # messages,
|
32 |
-
# # max_tokens=max_tokens,
|
33 |
-
# # stream=True,
|
34 |
-
# # temperature=temperature,
|
35 |
-
# # top_p=top_p,
|
36 |
-
# # ):
|
37 |
-
# # token = message.choices[0].delta.content
|
38 |
-
|
39 |
-
# # response += token
|
40 |
-
# # yield response
|
41 |
-
|
42 |
-
|
43 |
-
# # """
|
44 |
-
# # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
# # """
|
46 |
-
# # demo = gr.ChatInterface(
|
47 |
-
# # respond,
|
48 |
-
# # additional_inputs=[
|
49 |
-
# # gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
-
# # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
-
# # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
-
# # gr.Slider(
|
53 |
-
# # minimum=0.1,
|
54 |
-
# # maximum=1.0,
|
55 |
-
# # value=0.95,
|
56 |
-
# # step=0.05,
|
57 |
-
# # label="Top-p (nucleus sampling)",
|
58 |
-
# # ),
|
59 |
-
# # ],
|
60 |
-
# # )
|
61 |
-
|
62 |
-
|
63 |
-
# # if __name__ == "__main__":
|
64 |
-
# # demo.launch()
|
65 |
|
66 |
import torch
|
67 |
import gradio as gr
|
68 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
69 |
-
import os
|
70 |
-
from safetensors.torch import load_file, save_file
|
71 |
|
72 |
-
#
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
MODEL_2_NAME = "sarvamai/sarvam-1" # The base model on Hugging Face Hub
|
78 |
-
# MODEL_3_NAME =
|
79 |
-
|
80 |
-
def trim_adapter_weights(model_path):
|
81 |
-
"""
|
82 |
-
Trims the last token from the adapter's lm_head.lora_B.default.weight
|
83 |
-
if there is a mismatch with the base model.
|
84 |
-
"""
|
85 |
-
model_path = "./adapter_model.safetensors"
|
86 |
-
# if not os.path.exists(model_path):
|
87 |
-
# raise FileNotFoundError(f"Adapter file not found: {model_path}")
|
88 |
-
|
89 |
-
checkpoint = load_file(model_path)
|
90 |
-
print("Keys in checkpoint:", list(checkpoint.keys()))
|
91 |
-
|
92 |
-
key_to_trim = "lm_head.lora_B.default.weight"
|
93 |
-
|
94 |
-
if key_to_trim in checkpoint:
|
95 |
-
print("Entered")
|
96 |
-
original_size = checkpoint[key_to_trim].shape[0]
|
97 |
-
expected_size = original_size - 1 # Removing last token
|
98 |
-
|
99 |
-
print(f"Trimming {key_to_trim}: {original_size} -> {expected_size}")
|
100 |
-
|
101 |
-
checkpoint[key_to_trim] = checkpoint[key_to_trim][:-1] # Trim the last row
|
102 |
-
|
103 |
-
# Save the modified adapter
|
104 |
-
trimmed_adapter_path = os.path.join(model_path, "adapter_model_trimmed.safetensors")
|
105 |
-
save_file(checkpoint, trimmed_adapter_path)
|
106 |
-
return trimmed_adapter_path
|
107 |
-
print("didn't execute the if block!")
|
108 |
-
return model_path
|
109 |
-
model_path=os.path.join(MODEL_1_PATH,"adapter_model.safetensors")
|
110 |
-
trimmed_adapter_path = trim_adapter_weights(model_path)
|
111 |
-
|
112 |
-
# Load the tokenizer (same for both models)
|
113 |
-
TOKENIZER_NAME = "sarvamai/sarvam-1"
|
114 |
-
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_NAME)
|
115 |
-
|
116 |
-
# Function to load a model
|
117 |
-
def load_model(model_choice):
|
118 |
-
if model_choice == "Hugging face dataset":
|
119 |
-
model = AutoModelForCausalLM.from_pretrained("./", torch_dtype=torch.float16, device_map="auto")
|
120 |
-
trimmed_adapter_path = os.path.join("Priyanka6/fine-tuning-inference", "adapter_model_trimmed.safetensors")
|
121 |
-
model.load_adapter(trimmed_adapter_path, "safe_tensors") # Load safetensors adapter
|
122 |
-
else:
|
123 |
-
model = AutoModelForCausalLM.from_pretrained(MODEL_2_NAME)
|
124 |
-
model.eval()
|
125 |
-
return model
|
126 |
-
|
127 |
-
# Load default model on startup
|
128 |
-
current_model = load_model("Hugging face dataset")
|
129 |
-
|
130 |
-
# Chatbot response function
|
131 |
-
def respond(message, history, model_choice, max_tokens, temperature, top_p):
|
132 |
-
global current_model
|
133 |
-
|
134 |
-
# Switch model if user selects a different one
|
135 |
-
if (model_choice == "Hugging face dataset" and current_model is not None and current_model.config.name_or_path != MODEL_1_PATH) or \
|
136 |
-
(model_choice == "Proprietary dataset1" and current_model is not None and current_model.config.name_or_path != MODEL_2_NAME):
|
137 |
-
current_model = load_model(model_choice)
|
138 |
|
|
|
139 |
# Convert chat history to format
|
140 |
messages = [{"role": "system", "content": "You are a friendly AI assistant."}]
|
141 |
for val in history:
|
@@ -149,7 +73,7 @@ def respond(message, history, model_choice, max_tokens, temperature, top_p):
|
|
149 |
inputs = tokenizer.apply_chat_template(messages, tokenize=False)
|
150 |
input_tokens = tokenizer(inputs, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
|
151 |
|
152 |
-
output_tokens =
|
153 |
**input_tokens,
|
154 |
max_new_tokens=max_tokens,
|
155 |
temperature=temperature,
|
@@ -165,22 +89,13 @@ def respond(message, history, model_choice, max_tokens, temperature, top_p):
|
|
165 |
demo = gr.ChatInterface(
|
166 |
fn=respond,
|
167 |
additional_inputs=[
|
168 |
-
gr.Dropdown(choices=["Hugging face dataset", "Proprietary dataset1"], value="Fine-Tuned Model", label="Select Model"),
|
169 |
gr.Slider(minimum=1, maximum=1024, value=256, step=1, label="Max Tokens"),
|
170 |
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
|
171 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
|
172 |
],
|
|
|
|
|
173 |
)
|
174 |
|
175 |
if __name__ == "__main__":
|
176 |
-
demo.launch()
|
177 |
-
|
178 |
-
|
179 |
-
# # Test the chatbot
|
180 |
-
# if __name__ == "__main__":
|
181 |
-
# while True:
|
182 |
-
# query = input("User: ")
|
183 |
-
# if query.lower() in ["exit", "quit"]:
|
184 |
-
# break
|
185 |
-
# response = chat(query)
|
186 |
-
# print(f"Bot: {response}")
|
|
|
1 |
+
# import torch
|
2 |
+
# import gradio as gr
|
3 |
+
# from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
+
|
5 |
+
# # Load the model and tokenizer
|
6 |
+
# MODEL_NAME = "sarvamai/sarvam-1"
|
7 |
+
# tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
8 |
+
# model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16, device_map="auto")
|
9 |
+
# model.eval()
|
10 |
+
|
11 |
+
# def respond(message, history, max_tokens, temperature, top_p):
|
12 |
+
# # Convert chat history to format
|
13 |
+
# messages = [{"role": "system", "content": "You are a friendly AI assistant."}]
|
14 |
+
# for val in history:
|
15 |
+
# if val[0]:
|
16 |
+
# messages.append({"role": "user", "content": val[0]})
|
17 |
+
# if val[1]:
|
18 |
+
# messages.append({"role": "assistant", "content": val[1]})
|
19 |
+
# messages.append({"role": "user", "content": message})
|
20 |
+
|
21 |
+
# # Tokenize and generate response
|
22 |
+
# inputs = tokenizer.apply_chat_template(messages, tokenize=False)
|
23 |
+
# input_tokens = tokenizer(inputs, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
|
24 |
+
|
25 |
+
# output_tokens = model.generate(
|
26 |
+
# **input_tokens,
|
27 |
+
# max_new_tokens=max_tokens,
|
28 |
+
# temperature=temperature,
|
29 |
+
# top_p=top_p,
|
30 |
+
# pad_token_id=tokenizer.pad_token_id,
|
31 |
+
# eos_token_id=tokenizer.eos_token_id,
|
32 |
+
# )
|
33 |
+
|
34 |
+
# response = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
|
35 |
+
# return response
|
36 |
+
|
37 |
+
# # Define Gradio Chat Interface
|
38 |
+
# demo = gr.ChatInterface(
|
39 |
+
# fn=respond,
|
40 |
+
# additional_inputs=[
|
41 |
+
# gr.Slider(minimum=1, maximum=1024, value=256, step=1, label="Max Tokens"),
|
42 |
+
# gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
|
43 |
+
# gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
|
44 |
+
# ],
|
45 |
+
# title="Sarvam-1 Chat Interface",
|
46 |
+
# description="Chat with the Sarvam-1 language model"
|
47 |
+
# )
|
48 |
|
49 |
+
# if __name__ == "__main__":
|
50 |
+
# demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
import torch
|
53 |
import gradio as gr
|
54 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
|
|
|
|
55 |
|
56 |
+
# Load the model and tokenizer
|
57 |
+
MODEL_NAME = "sarvamai/sarvam-1"
|
58 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
59 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16, device_map="auto")
|
60 |
+
model.eval()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
def respond(message, history, max_tokens, temperature, top_p):
|
63 |
# Convert chat history to format
|
64 |
messages = [{"role": "system", "content": "You are a friendly AI assistant."}]
|
65 |
for val in history:
|
|
|
73 |
inputs = tokenizer.apply_chat_template(messages, tokenize=False)
|
74 |
input_tokens = tokenizer(inputs, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
|
75 |
|
76 |
+
output_tokens = model.generate(
|
77 |
**input_tokens,
|
78 |
max_new_tokens=max_tokens,
|
79 |
temperature=temperature,
|
|
|
89 |
demo = gr.ChatInterface(
|
90 |
fn=respond,
|
91 |
additional_inputs=[
|
|
|
92 |
gr.Slider(minimum=1, maximum=1024, value=256, step=1, label="Max Tokens"),
|
93 |
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
|
94 |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
|
95 |
],
|
96 |
+
title="Sarvam-1 Chat Interface",
|
97 |
+
description="Chat with the Sarvam-1 language model"
|
98 |
)
|
99 |
|
100 |
if __name__ == "__main__":
|
101 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|