Spaces:
Runtime error
Runtime error
# import torch | |
# import gradio as gr | |
# from transformers import AutoModelForCausalLM, AutoTokenizer | |
# # Load the model and tokenizer | |
# MODEL_NAME = "sarvamai/sarvam-1" | |
# tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
# model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16, device_map="auto") | |
# model.eval() | |
# def respond(message, history, max_tokens, temperature, top_p): | |
# # Convert chat history to format | |
# messages = [{"role": "system", "content": "You are a friendly AI assistant."}] | |
# for val in history: | |
# if val[0]: | |
# messages.append({"role": "user", "content": val[0]}) | |
# if val[1]: | |
# messages.append({"role": "assistant", "content": val[1]}) | |
# messages.append({"role": "user", "content": message}) | |
# # Tokenize and generate response | |
# inputs = tokenizer.apply_chat_template(messages, tokenize=False) | |
# input_tokens = tokenizer(inputs, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu") | |
# output_tokens = model.generate( | |
# **input_tokens, | |
# max_new_tokens=max_tokens, | |
# temperature=temperature, | |
# top_p=top_p, | |
# pad_token_id=tokenizer.pad_token_id, | |
# eos_token_id=tokenizer.eos_token_id, | |
# ) | |
# response = tokenizer.decode(output_tokens[0], skip_special_tokens=True) | |
# return response | |
# # Define Gradio Chat Interface | |
# demo = gr.ChatInterface( | |
# fn=respond, | |
# additional_inputs=[ | |
# gr.Slider(minimum=1, maximum=1024, value=256, step=1, label="Max Tokens"), | |
# gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"), | |
# gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), | |
# ], | |
# title="Sarvam-1 Chat Interface", | |
# description="Chat with the Sarvam-1 language model" | |
# ) | |
# if __name__ == "__main__": | |
# demo.launch() | |
import torch | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
# Load the model and tokenizer | |
MODEL_NAME = "sarvamai/sarvam-1" | |
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16, device_map="auto") | |
model.eval() | |
def respond(message, history, max_tokens, temperature, top_p): | |
# Convert chat history to format | |
messages = [{"role": "system", "content": "You are a friendly AI assistant."}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
# Tokenize and generate response | |
inputs = tokenizer.apply_chat_template(messages, tokenize=False) | |
input_tokens = tokenizer(inputs, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu") | |
output_tokens = model.generate( | |
**input_tokens, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
pad_token_id=tokenizer.pad_token_id, | |
eos_token_id=tokenizer.eos_token_id, | |
) | |
response = tokenizer.decode(output_tokens[0], skip_special_tokens=True) | |
return response | |
# Define Gradio Chat Interface | |
demo = gr.ChatInterface( | |
fn=respond, | |
additional_inputs=[ | |
gr.Slider(minimum=1, maximum=1024, value=256, step=1, label="Max Tokens"), | |
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), | |
], | |
title="Sarvam-1 Chat Interface", | |
description="Chat with the Sarvam-1 language model" | |
) | |
if __name__ == "__main__": | |
demo.launch() |