Spaces:
Runtime error
Runtime error
# import gradio as gr | |
# from huggingface_hub import InferenceClient | |
# """ | |
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference | |
# """ | |
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") | |
# def respond( | |
# message, | |
# history: list[tuple[str, str]], | |
# system_message, | |
# max_tokens, | |
# temperature, | |
# top_p, | |
# ): | |
# messages = [{"role": "system", "content": system_message}] | |
# for val in history: | |
# if val[0]: | |
# messages.append({"role": "user", "content": val[0]}) | |
# if val[1]: | |
# messages.append({"role": "assistant", "content": val[1]}) | |
# messages.append({"role": "user", "content": message}) | |
# response = "" | |
# for message in client.chat_completion( | |
# messages, | |
# max_tokens=max_tokens, | |
# stream=True, | |
# temperature=temperature, | |
# top_p=top_p, | |
# ): | |
# token = message.choices[0].delta.content | |
# response += token | |
# yield response | |
# """ | |
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
# """ | |
# demo = gr.ChatInterface( | |
# respond, | |
# additional_inputs=[ | |
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
# gr.Slider( | |
# minimum=0.1, | |
# maximum=1.0, | |
# value=0.95, | |
# step=0.05, | |
# label="Top-p (nucleus sampling)", | |
# ), | |
# ], | |
# ) | |
# if __name__ == "__main__": | |
# demo.launch() | |
import torch | |
import gradio as gr | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import os | |
# Define model names | |
MODEL_1_PATH = "adapter_model.safetensors" # Your fine-tuned model | |
MODEL_2_NAME = "sarvamai/sarvam-1" # The base model on Hugging Face Hub | |
# Load the tokenizer (same for both models) | |
TOKENIZER_NAME = "sarvamai/sarvam-1" | |
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_NAME) | |
# Function to load a model | |
def load_model(model_choice): | |
if model_choice == "Hugging face dataset": | |
model = AutoModelForCausalLM.from_pretrained(TOKENIZER_NAME) | |
model.load_adapter(MODEL_1_PATH, "safe_tensors") # Load safetensors adapter | |
else: | |
model = AutoModelForCausalLM.from_pretrained(MODEL_2_NAME) | |
model.eval() | |
return model | |
# Load default model on startup | |
current_model = load_model("Hugging face dataset") | |
# Chatbot response function | |
def respond(message, history, model_choice, max_tokens, temperature, top_p): | |
global current_model | |
# Switch model if user selects a different one | |
if (model_choice == "Hugging face dataset" and current_model is not None and current_model.config.name_or_path != MODEL_1_PATH) or \ | |
(model_choice == "Proprietary dataset1" and current_model is not None and current_model.config.name_or_path != MODEL_2_NAME): | |
current_model = load_model(model_choice) | |
# Convert chat history to format | |
messages = [{"role": "system", "content": "You are a friendly AI assistant."}] | |
for val in history: | |
if val[0]: | |
messages.append({"role": "user", "content": val[0]}) | |
if val[1]: | |
messages.append({"role": "assistant", "content": val[1]}) | |
messages.append({"role": "user", "content": message}) | |
# Tokenize and generate response | |
inputs = tokenizer.apply_chat_template(messages, tokenize=False) | |
input_tokens = tokenizer(inputs, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu") | |
output_tokens = current_model.generate( | |
**input_tokens, | |
max_new_tokens=max_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
pad_token_id=tokenizer.pad_token_id, | |
eos_token_id=tokenizer.eos_token_id, | |
) | |
response = tokenizer.decode(output_tokens[0], skip_special_tokens=True) | |
return response | |
# Define Gradio Chat Interface | |
demo = gr.ChatInterface( | |
fn=respond, | |
additional_inputs=[ | |
gr.Dropdown(choices=["Hugging face dataset", "Proprietary dataset1"], value="Fine-Tuned Model", label="Select Model"), | |
gr.Slider(minimum=1, maximum=1024, value=256, step=1, label="Max Tokens"), | |
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |