Priyanka6's picture
Update space
76945ee
raw
history blame
4.66 kB
# import gradio as gr
# from huggingface_hub import InferenceClient
# """
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
# """
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
# def respond(
# message,
# history: list[tuple[str, str]],
# system_message,
# max_tokens,
# temperature,
# top_p,
# ):
# messages = [{"role": "system", "content": system_message}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
# response = ""
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# token = message.choices[0].delta.content
# response += token
# yield response
# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
# respond,
# additional_inputs=[
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
# ],
# )
# if __name__ == "__main__":
# demo.launch()
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import os
# Define model names
MODEL_1_PATH = "adapter_model.safetensors" # Your fine-tuned model
MODEL_2_NAME = "sarvamai/sarvam-1" # The base model on Hugging Face Hub
# Load the tokenizer (same for both models)
TOKENIZER_NAME = "sarvamai/sarvam-1"
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_NAME)
# Function to load a model
def load_model(model_choice):
if model_choice == "Hugging face dataset":
model = AutoModelForCausalLM.from_pretrained(TOKENIZER_NAME)
model.load_adapter(MODEL_1_PATH, "safe_tensors") # Load safetensors adapter
else:
model = AutoModelForCausalLM.from_pretrained(MODEL_2_NAME)
model.eval()
return model
# Load default model on startup
current_model = load_model("Hugging face dataset")
# Chatbot response function
def respond(message, history, model_choice, max_tokens, temperature, top_p):
global current_model
# Switch model if user selects a different one
if (model_choice == "Hugging face dataset" and current_model is not None and current_model.config.name_or_path != MODEL_1_PATH) or \
(model_choice == "Proprietary dataset1" and current_model is not None and current_model.config.name_or_path != MODEL_2_NAME):
current_model = load_model(model_choice)
# Convert chat history to format
messages = [{"role": "system", "content": "You are a friendly AI assistant."}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
messages.append({"role": "user", "content": message})
# Tokenize and generate response
inputs = tokenizer.apply_chat_template(messages, tokenize=False)
input_tokens = tokenizer(inputs, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
output_tokens = current_model.generate(
**input_tokens,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
)
response = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
return response
# Define Gradio Chat Interface
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
gr.Dropdown(choices=["Hugging face dataset", "Proprietary dataset1"], value="Fine-Tuned Model", label="Select Model"),
gr.Slider(minimum=1, maximum=1024, value=256, step=1, label="Max Tokens"),
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
],
)
if __name__ == "__main__":
demo.launch()