Priyanka6 commited on
Commit
76945ee
Β·
1 Parent(s): 6c31143

Update space

Browse files
Files changed (1) hide show
  1. app.py +115 -41
app.py CHANGED
@@ -1,64 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("sarvamai/sarvam-1")
8
 
 
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
 
 
 
 
 
 
 
 
 
 
 
20
  for val in history:
21
  if val[0]:
22
  messages.append({"role": "user", "content": val[0]})
23
  if val[1]:
24
  messages.append({"role": "assistant", "content": val[1]})
25
-
26
  messages.append({"role": "user", "content": message})
27
 
28
- response = ""
 
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
  temperature=temperature,
35
  top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
 
38
 
39
- response += token
40
- yield response
41
 
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
- respond,
48
  additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
+ # import gradio as gr
2
+ # from huggingface_hub import InferenceClient
3
+
4
+ # """
5
+ # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ # """
7
+ # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
+
9
+
10
+ # def respond(
11
+ # message,
12
+ # history: list[tuple[str, str]],
13
+ # system_message,
14
+ # max_tokens,
15
+ # temperature,
16
+ # top_p,
17
+ # ):
18
+ # messages = [{"role": "system", "content": system_message}]
19
+
20
+ # for val in history:
21
+ # if val[0]:
22
+ # messages.append({"role": "user", "content": val[0]})
23
+ # if val[1]:
24
+ # messages.append({"role": "assistant", "content": val[1]})
25
+
26
+ # messages.append({"role": "user", "content": message})
27
+
28
+ # response = ""
29
+
30
+ # for message in client.chat_completion(
31
+ # messages,
32
+ # max_tokens=max_tokens,
33
+ # stream=True,
34
+ # temperature=temperature,
35
+ # top_p=top_p,
36
+ # ):
37
+ # token = message.choices[0].delta.content
38
+
39
+ # response += token
40
+ # yield response
41
+
42
+
43
+ # """
44
+ # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
+ # """
46
+ # demo = gr.ChatInterface(
47
+ # respond,
48
+ # additional_inputs=[
49
+ # gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
+ # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
+ # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
+ # gr.Slider(
53
+ # minimum=0.1,
54
+ # maximum=1.0,
55
+ # value=0.95,
56
+ # step=0.05,
57
+ # label="Top-p (nucleus sampling)",
58
+ # ),
59
+ # ],
60
+ # )
61
+
62
+
63
+ # if __name__ == "__main__":
64
+ # demo.launch()
65
+
66
+ import torch
67
  import gradio as gr
68
+ from transformers import AutoModelForCausalLM, AutoTokenizer
69
+ import os
70
+
71
+ # Define model names
72
+ MODEL_1_PATH = "adapter_model.safetensors" # Your fine-tuned model
73
+ MODEL_2_NAME = "sarvamai/sarvam-1" # The base model on Hugging Face Hub
74
 
75
+ # Load the tokenizer (same for both models)
76
+ TOKENIZER_NAME = "sarvamai/sarvam-1"
77
+ tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_NAME)
 
78
 
79
+ # Function to load a model
80
+ def load_model(model_choice):
81
+ if model_choice == "Hugging face dataset":
82
+ model = AutoModelForCausalLM.from_pretrained(TOKENIZER_NAME)
83
+ model.load_adapter(MODEL_1_PATH, "safe_tensors") # Load safetensors adapter
84
+ else:
85
+ model = AutoModelForCausalLM.from_pretrained(MODEL_2_NAME)
86
+ model.eval()
87
+ return model
88
 
89
+ # Load default model on startup
90
+ current_model = load_model("Hugging face dataset")
 
 
 
 
 
 
 
91
 
92
+ # Chatbot response function
93
+ def respond(message, history, model_choice, max_tokens, temperature, top_p):
94
+ global current_model
95
+
96
+ # Switch model if user selects a different one
97
+ if (model_choice == "Hugging face dataset" and current_model is not None and current_model.config.name_or_path != MODEL_1_PATH) or \
98
+ (model_choice == "Proprietary dataset1" and current_model is not None and current_model.config.name_or_path != MODEL_2_NAME):
99
+ current_model = load_model(model_choice)
100
+
101
+ # Convert chat history to format
102
+ messages = [{"role": "system", "content": "You are a friendly AI assistant."}]
103
  for val in history:
104
  if val[0]:
105
  messages.append({"role": "user", "content": val[0]})
106
  if val[1]:
107
  messages.append({"role": "assistant", "content": val[1]})
 
108
  messages.append({"role": "user", "content": message})
109
 
110
+ # Tokenize and generate response
111
+ inputs = tokenizer.apply_chat_template(messages, tokenize=False)
112
+ input_tokens = tokenizer(inputs, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
113
 
114
+ output_tokens = current_model.generate(
115
+ **input_tokens,
116
+ max_new_tokens=max_tokens,
 
117
  temperature=temperature,
118
  top_p=top_p,
119
+ pad_token_id=tokenizer.pad_token_id,
120
+ eos_token_id=tokenizer.eos_token_id,
121
+ )
122
 
123
+ response = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
124
+ return response
125
 
126
+ # Define Gradio Chat Interface
 
 
 
127
  demo = gr.ChatInterface(
128
+ fn=respond,
129
  additional_inputs=[
130
+ gr.Dropdown(choices=["Hugging face dataset", "Proprietary dataset1"], value="Fine-Tuned Model", label="Select Model"),
131
+ gr.Slider(minimum=1, maximum=1024, value=256, step=1, label="Max Tokens"),
132
+ gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
133
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
 
 
 
 
 
 
134
  ],
135
  )
136
 
 
137
  if __name__ == "__main__":
138
+ demo.launch()