Spaces:
Runtime error
Runtime error
Update space
Browse files
app.py
CHANGED
@@ -1,64 +1,138 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
-
from
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
client = InferenceClient("sarvamai/sarvam-1")
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
history: list[tuple[str, str]],
|
13 |
-
system_message,
|
14 |
-
max_tokens,
|
15 |
-
temperature,
|
16 |
-
top_p,
|
17 |
-
):
|
18 |
-
messages = [{"role": "system", "content": system_message}]
|
19 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
for val in history:
|
21 |
if val[0]:
|
22 |
messages.append({"role": "user", "content": val[0]})
|
23 |
if val[1]:
|
24 |
messages.append({"role": "assistant", "content": val[1]})
|
25 |
-
|
26 |
messages.append({"role": "user", "content": message})
|
27 |
|
28 |
-
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
stream=True,
|
34 |
temperature=temperature,
|
35 |
top_p=top_p,
|
36 |
-
|
37 |
-
|
|
|
38 |
|
39 |
-
|
40 |
-
|
41 |
|
42 |
-
|
43 |
-
"""
|
44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
-
"""
|
46 |
demo = gr.ChatInterface(
|
47 |
-
respond,
|
48 |
additional_inputs=[
|
49 |
-
gr.
|
50 |
-
gr.Slider(minimum=1, maximum=
|
51 |
-
gr.Slider(minimum=0.1, maximum=
|
52 |
-
gr.Slider(
|
53 |
-
minimum=0.1,
|
54 |
-
maximum=1.0,
|
55 |
-
value=0.95,
|
56 |
-
step=0.05,
|
57 |
-
label="Top-p (nucleus sampling)",
|
58 |
-
),
|
59 |
],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
if __name__ == "__main__":
|
64 |
-
demo.launch()
|
|
|
1 |
+
# import gradio as gr
|
2 |
+
# from huggingface_hub import InferenceClient
|
3 |
+
|
4 |
+
# """
|
5 |
+
# For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
+
# """
|
7 |
+
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
+
|
9 |
+
|
10 |
+
# def respond(
|
11 |
+
# message,
|
12 |
+
# history: list[tuple[str, str]],
|
13 |
+
# system_message,
|
14 |
+
# max_tokens,
|
15 |
+
# temperature,
|
16 |
+
# top_p,
|
17 |
+
# ):
|
18 |
+
# messages = [{"role": "system", "content": system_message}]
|
19 |
+
|
20 |
+
# for val in history:
|
21 |
+
# if val[0]:
|
22 |
+
# messages.append({"role": "user", "content": val[0]})
|
23 |
+
# if val[1]:
|
24 |
+
# messages.append({"role": "assistant", "content": val[1]})
|
25 |
+
|
26 |
+
# messages.append({"role": "user", "content": message})
|
27 |
+
|
28 |
+
# response = ""
|
29 |
+
|
30 |
+
# for message in client.chat_completion(
|
31 |
+
# messages,
|
32 |
+
# max_tokens=max_tokens,
|
33 |
+
# stream=True,
|
34 |
+
# temperature=temperature,
|
35 |
+
# top_p=top_p,
|
36 |
+
# ):
|
37 |
+
# token = message.choices[0].delta.content
|
38 |
+
|
39 |
+
# response += token
|
40 |
+
# yield response
|
41 |
+
|
42 |
+
|
43 |
+
# """
|
44 |
+
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
45 |
+
# """
|
46 |
+
# demo = gr.ChatInterface(
|
47 |
+
# respond,
|
48 |
+
# additional_inputs=[
|
49 |
+
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
50 |
+
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
51 |
+
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
52 |
+
# gr.Slider(
|
53 |
+
# minimum=0.1,
|
54 |
+
# maximum=1.0,
|
55 |
+
# value=0.95,
|
56 |
+
# step=0.05,
|
57 |
+
# label="Top-p (nucleus sampling)",
|
58 |
+
# ),
|
59 |
+
# ],
|
60 |
+
# )
|
61 |
+
|
62 |
+
|
63 |
+
# if __name__ == "__main__":
|
64 |
+
# demo.launch()
|
65 |
+
|
66 |
+
import torch
|
67 |
import gradio as gr
|
68 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
69 |
+
import os
|
70 |
+
|
71 |
+
# Define model names
|
72 |
+
MODEL_1_PATH = "adapter_model.safetensors" # Your fine-tuned model
|
73 |
+
MODEL_2_NAME = "sarvamai/sarvam-1" # The base model on Hugging Face Hub
|
74 |
|
75 |
+
# Load the tokenizer (same for both models)
|
76 |
+
TOKENIZER_NAME = "sarvamai/sarvam-1"
|
77 |
+
tokenizer = AutoTokenizer.from_pretrained(TOKENIZER_NAME)
|
|
|
78 |
|
79 |
+
# Function to load a model
|
80 |
+
def load_model(model_choice):
|
81 |
+
if model_choice == "Hugging face dataset":
|
82 |
+
model = AutoModelForCausalLM.from_pretrained(TOKENIZER_NAME)
|
83 |
+
model.load_adapter(MODEL_1_PATH, "safe_tensors") # Load safetensors adapter
|
84 |
+
else:
|
85 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_2_NAME)
|
86 |
+
model.eval()
|
87 |
+
return model
|
88 |
|
89 |
+
# Load default model on startup
|
90 |
+
current_model = load_model("Hugging face dataset")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
92 |
+
# Chatbot response function
|
93 |
+
def respond(message, history, model_choice, max_tokens, temperature, top_p):
|
94 |
+
global current_model
|
95 |
+
|
96 |
+
# Switch model if user selects a different one
|
97 |
+
if (model_choice == "Hugging face dataset" and current_model is not None and current_model.config.name_or_path != MODEL_1_PATH) or \
|
98 |
+
(model_choice == "Proprietary dataset1" and current_model is not None and current_model.config.name_or_path != MODEL_2_NAME):
|
99 |
+
current_model = load_model(model_choice)
|
100 |
+
|
101 |
+
# Convert chat history to format
|
102 |
+
messages = [{"role": "system", "content": "You are a friendly AI assistant."}]
|
103 |
for val in history:
|
104 |
if val[0]:
|
105 |
messages.append({"role": "user", "content": val[0]})
|
106 |
if val[1]:
|
107 |
messages.append({"role": "assistant", "content": val[1]})
|
|
|
108 |
messages.append({"role": "user", "content": message})
|
109 |
|
110 |
+
# Tokenize and generate response
|
111 |
+
inputs = tokenizer.apply_chat_template(messages, tokenize=False)
|
112 |
+
input_tokens = tokenizer(inputs, return_tensors="pt").to("cuda" if torch.cuda.is_available() else "cpu")
|
113 |
|
114 |
+
output_tokens = current_model.generate(
|
115 |
+
**input_tokens,
|
116 |
+
max_new_tokens=max_tokens,
|
|
|
117 |
temperature=temperature,
|
118 |
top_p=top_p,
|
119 |
+
pad_token_id=tokenizer.pad_token_id,
|
120 |
+
eos_token_id=tokenizer.eos_token_id,
|
121 |
+
)
|
122 |
|
123 |
+
response = tokenizer.decode(output_tokens[0], skip_special_tokens=True)
|
124 |
+
return response
|
125 |
|
126 |
+
# Define Gradio Chat Interface
|
|
|
|
|
|
|
127 |
demo = gr.ChatInterface(
|
128 |
+
fn=respond,
|
129 |
additional_inputs=[
|
130 |
+
gr.Dropdown(choices=["Hugging face dataset", "Proprietary dataset1"], value="Fine-Tuned Model", label="Select Model"),
|
131 |
+
gr.Slider(minimum=1, maximum=1024, value=256, step=1, label="Max Tokens"),
|
132 |
+
gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature"),
|
133 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
|
|
|
|
|
|
|
|
|
|
|
|
|
134 |
],
|
135 |
)
|
136 |
|
|
|
137 |
if __name__ == "__main__":
|
138 |
+
demo.launch()
|