Spaces:
Sleeping
Sleeping
File size: 17,950 Bytes
d060bf3 e717392 d060bf3 e717392 d060bf3 e717392 d060bf3 e717392 d060bf3 e717392 d060bf3 e717392 d060bf3 e717392 d060bf3 e717392 d060bf3 e717392 d060bf3 e717392 d060bf3 e717392 d060bf3 e717392 d060bf3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 |
import streamlit as st
import boto3
import json
import chromadb
import pandas as pd
import time
import re
from datetime import datetime
# Sample Bollywood movies data (simplified for demo)
SAMPLE_MOVIES = [
{"title": "Sholay", "year": 1975, "genre": "Action", "director": "Ramesh Sippy",
"plot": "Two criminals are hired by a retired police officer to capture a bandit terrorizing a village."},
{"title": "Dilwale Dulhania Le Jayenge", "year": 1995, "genre": "Romance", "director": "Aditya Chopra",
"plot": "A young man and woman fall in love during a trip to Europe, but face family opposition."},
{"title": "Lagaan", "year": 2001, "genre": "Drama", "director": "Ashutosh Gowariker",
"plot": "Villagers accept a challenge from British officers to play cricket to avoid paying tax."},
{"title": "3 Idiots", "year": 2009, "genre": "Comedy", "director": "Rajkumar Hirani",
"plot": "Two friends search for their missing college friend and recall their engineering days."},
{"title": "Dangal", "year": 2016, "genre": "Sports", "director": "Nitesh Tiwari",
"plot": "A former wrestler trains his daughters to become world-class wrestlers."},
{"title": "Anand", "year": 1971, "genre": "Drama", "director": "Hrishikesh Mukherjee",
"plot": "A terminally ill man spreads joy and teaches the meaning of life to a doctor."},
{"title": "Golmaal", "year": 1979, "genre": "Comedy", "director": "Hrishikesh Mukherjee",
"plot": "A man creates chaos by lying about his identity to get a job."},
{"title": "Chupke Chupke", "year": 1975, "genre": "Comedy", "director": "Hrishikesh Mukherjee",
"plot": "A newlywed plays pranks on his wife's family by pretending to be someone else."},
{"title": "Don", "year": 1978, "genre": "Action", "director": "Chandra Barot",
"plot": "A police officer impersonates a crime boss to infiltrate his gang."},
{"title": "Andaz Apna Apna", "year": 1994, "genre": "Comedy", "director": "Rajkumar Santoshi",
"plot": "Two friends compete to marry a wealthy heiress but get caught up in a kidnapping plot."},
{"title": "Mughal-E-Azam", "year": 1960, "genre": "Romance", "director": "K. Asif",
"plot": "A Mughal prince falls in love with a court dancer, defying his father the emperor."},
{"title": "Deewaar", "year": 1975, "genre": "Action", "director": "Yash Chopra",
"plot": "Two brothers choose different paths in life - one becomes a police officer, the other a criminal."},
{"title": "Queen", "year": 2013, "genre": "Comedy", "director": "Vikas Bahl",
"plot": "A woman goes on her honeymoon alone after her wedding is called off."},
{"title": "Zindagi Na Milegi Dobara", "year": 2011, "genre": "Adventure", "director": "Zoya Akhtar",
"plot": "Three friends go on a bachelor trip to Spain and face their fears."},
{"title": "Taare Zameen Par", "year": 2007, "genre": "Drama", "director": "Aamir Khan",
"plot": "An art teacher helps a dyslexic child overcome his learning difficulties."},
{"title": "Rang De Basanti", "year": 2006, "genre": "Drama", "director": "Rakeysh Omprakash Mehra",
"plot": "College students making a documentary about freedom fighters become revolutionaries themselves."},
{"title": "Gol Maal", "year": 1979, "genre": "Comedy", "director": "Hrishikesh Mukherjee",
"plot": "A young man lies about having a mustache to keep his job with a strict boss."},
{"title": "Namak Haraam", "year": 1973, "genre": "Drama", "director": "Hrishikesh Mukherjee",
"plot": "A friendship is tested when one friend betrays the other for money and power."},
{"title": "Kuch Kuch Hota Hai", "year": 1998, "genre": "Romance", "director": "Karan Johar",
"plot": "A man's daughter tries to reunite him with his college sweetheart."},
{"title": "My Name is Khan", "year": 2010, "genre": "Drama", "director": "Karan Johar",
"plot": "A man with Asperger's syndrome embarks on a journey to meet the President of the United States."}
]
# Simple function to connect to AWS Bedrock
def connect_to_bedrock():
try:
client = boto3.client('bedrock-runtime', region_name='us-east-1')
return client
except:
st.error("β οΈ AWS Bedrock not configured. Using mock responses for demo.")
return None
# Get embeddings from Bedrock
def get_embeddings(bedrock_client, text):
if not bedrock_client:
# Return dummy embedding for demo
import random
return [random.random() for _ in range(1536)]
try:
body = json.dumps({"inputText": text})
response = bedrock_client.invoke_model(
modelId="amazon.titan-embed-text-v1",
body=body
)
result = json.loads(response['body'].read())
return result['embedding']
except:
# Return dummy embedding if API fails
import random
return [random.random() for _ in range(1536)]
# Create movie documents and store in ChromaDB
def setup_movie_database(bedrock_client):
st.write("π¬ Setting up Bollywood movies database...")
# Create ChromaDB client
chroma_client = chromadb.Client()
# Create or recreate collection
try:
chroma_client.delete_collection("bollywood_movies")
except:
pass
collection = chroma_client.create_collection("bollywood_movies")
# Prepare data for ChromaDB
ids = []
documents = []
metadatas = []
embeddings = []
progress_bar = st.progress(0)
for i, movie in enumerate(SAMPLE_MOVIES):
# Create document text
doc_text = f"Title: {movie['title']}\nYear: {movie['year']}\nGenre: {movie['genre']}\nDirector: {movie['director']}\nPlot: {movie['plot']}"
# Get embedding
embedding = get_embeddings(bedrock_client, doc_text)
# Prepare data
ids.append(str(i))
documents.append(doc_text)
metadatas.append({
'title': movie['title'],
'year': movie['year'],
'genre': movie['genre'].lower(),
'director': movie['director'].lower(),
'decade': f"{(movie['year'] // 10) * 10}s"
})
embeddings.append(embedding)
progress_bar.progress((i + 1) / len(SAMPLE_MOVIES))
# Add to ChromaDB
collection.add(
ids=ids,
documents=documents,
metadatas=metadatas,
embeddings=embeddings
)
st.success(f"β
Added {len(SAMPLE_MOVIES)} movies to database!")
return collection
# Simple query filter detection
def detect_filters(query):
query_lower = query.lower()
filters = {}
# Genre detection
genres = ['action', 'comedy', 'drama', 'romance', 'sports', 'adventure']
for genre in genres:
if genre in query_lower:
filters['genre'] = genre
break
# Decade detection
decades = ['1960s', '1970s', '1980s', '1990s', '2000s', '2010s']
for decade in decades:
if decade in query_lower:
filters['decade'] = decade
break
# Year detection
years = re.findall(r'\b(19\d{2}|20\d{2})\b', query)
if years:
year = int(years[0])
filters['decade'] = f"{(year // 10) * 10}s"
# Director detection (simple)
directors = ['hrishikesh mukherjee', 'rajkumar hirani', 'aamir khan', 'yash chopra']
for director in directors:
if director in query_lower:
filters['director'] = director
break
return filters
# Retrieve without metadata filter
def retrieve_without_filter(collection, bedrock_client, query, top_k=5):
start_time = time.time()
# Get query embedding
query_embedding = get_embeddings(bedrock_client, query)
# Search without filters
results = collection.query(
query_embeddings=[query_embedding],
n_results=top_k
)
end_time = time.time()
# Format results
movies = []
for i in range(len(results['documents'][0])):
movies.append({
'document': results['documents'][0][i],
'metadata': results['metadatas'][0][i],
'distance': results['distances'][0][i]
})
return movies, end_time - start_time
# Retrieve with metadata filter
def retrieve_with_filter(collection, bedrock_client, query, filters, top_k=5):
start_time = time.time()
# Get query embedding
query_embedding = get_embeddings(bedrock_client, query)
# Create where clause for filtering
where_clause = {}
for key, value in filters.items():
where_clause[key] = value
# Search with filters
try:
results = collection.query(
query_embeddings=[query_embedding],
n_results=top_k,
where=where_clause
)
except:
# If filtering fails, fall back to no filter
results = collection.query(
query_embeddings=[query_embedding],
n_results=top_k
)
end_time = time.time()
# Format results
movies = []
for i in range(len(results['documents'][0])):
movies.append({
'document': results['documents'][0][i],
'metadata': results['metadatas'][0][i],
'distance': results['distances'][0][i]
})
return movies, end_time - start_time
# Generate answer using Bedrock
def generate_answer(bedrock_client, query, movies):
if not bedrock_client:
return "π¬ Based on the retrieved movies, here are some recommendations that match your query!"
# Create context from movies
context = "\n\n".join([movie['document'] for movie in movies])
prompt = f"""
Based on the following Bollywood movies information, please answer the user's question.
Question: {query}
Movies Information:
{context}
Please provide a helpful and informative answer about the movies.
"""
try:
body = json.dumps({
"anthropic_version": "bedrock-2023-05-31",
"max_tokens": 400,
"messages": [{"role": "user", "content": prompt}]
})
response = bedrock_client.invoke_model(
modelId="anthropic.claude-3-haiku-20240307-v1:0",
body=body
)
result = json.loads(response['body'].read())
return result['content'][0]['text']
except:
return "π¬ Based on the retrieved movies, here are some great recommendations that match your query!"
# Main app
def main():
st.title("π¬ Bollywood Movies RAG with Metadata Filtering")
st.write("Ask questions about Bollywood movies and see how metadata filtering speeds up retrieval!")
# Initialize session state
if 'collection' not in st.session_state:
st.session_state.collection = None
if 'setup_done' not in st.session_state:
st.session_state.setup_done = False
# Setup section
if not st.session_state.setup_done:
st.subheader("π οΈ Setup Movie Database")
if st.button("π Load Bollywood Movies Data"):
try:
bedrock_client = connect_to_bedrock()
collection = setup_movie_database(bedrock_client)
st.session_state.collection = collection
st.session_state.bedrock_client = bedrock_client
st.session_state.setup_done = True
st.balloons()
except Exception as e:
st.error(f"β Setup failed: {str(e)}")
else:
st.success("β
Movie database is ready!")
# Sample queries
st.subheader("π Try These Sample Queries")
sample_queries = [
"What are some good action movies?",
"Tell me a few comedy movies from the 1970s",
"What is the movie Sholay about?",
"Tell me a few movies directed by Hrishikesh Mukherjee",
"What are some romantic movies from the 1990s?"
]
query_option = st.radio("Choose a query:", ["Custom Query"] + sample_queries)
if query_option == "Custom Query":
query = st.text_input("Enter your question about Bollywood movies:")
else:
query = query_option
st.write(f"Selected: **{query}**")
if query:
if st.button("π Search Movies"):
try:
bedrock_client = st.session_state.bedrock_client
collection = st.session_state.collection
# Detect filters
filters = detect_filters(query)
st.write("---")
# Method 1: Without metadata filter
st.subheader("π Method 1: Without Metadata Filter")
movies_no_filter, time_no_filter = retrieve_without_filter(collection, bedrock_client, query)
st.write(f"β±οΈ **Time taken: {time_no_filter:.4f} seconds**")
st.write("**Retrieved Movies:**")
for i, movie in enumerate(movies_no_filter, 1):
with st.expander(f"{i}. {movie['metadata']['title']} ({movie['metadata']['year']})"):
st.write(f"**Genre:** {movie['metadata']['genre'].title()}")
st.write(f"**Director:** {movie['metadata']['director'].title()}")
st.write(f"**Distance:** {movie['distance']:.4f}")
# Method 2: With metadata filter
st.subheader("π― Method 2: With Metadata Filter")
if filters:
st.write(f"**Detected Filters:** {filters}")
movies_with_filter, time_with_filter = retrieve_with_filter(collection, bedrock_client, query, filters)
st.write(f"β±οΈ **Time taken: {time_with_filter:.4f} seconds**")
st.write("**Filtered Retrieved Movies:**")
for i, movie in enumerate(movies_with_filter, 1):
with st.expander(f"{i}. {movie['metadata']['title']} ({movie['metadata']['year']})"):
st.write(f"**Genre:** {movie['metadata']['genre'].title()}")
st.write(f"**Director:** {movie['metadata']['director'].title()}")
st.write(f"**Distance:** {movie['distance']:.4f}")
# Performance comparison
st.subheader("β‘ Performance Comparison")
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Without Filter", f"{time_no_filter:.4f}s")
with col2:
st.metric("With Filter", f"{time_with_filter:.4f}s")
with col3:
speedup = ((time_no_filter - time_with_filter) / time_no_filter) * 100 if time_no_filter > 0 else 0
st.metric("Speedup", f"{speedup:.1f}%")
# Generate final answer
st.subheader("π€ AI Generated Answer")
answer = generate_answer(bedrock_client, query, movies_with_filter)
st.success(answer)
else:
st.write("**No specific filters detected** - using general retrieval")
st.write(f"β±οΈ **Time taken: {time_no_filter:.4f} seconds**")
# Generate answer with no filter results
st.subheader("π€ AI Generated Answer")
answer = generate_answer(bedrock_client, query, movies_no_filter)
st.success(answer)
except Exception as e:
st.error(f"β Search failed: {str(e)}")
# Show movie database
if st.checkbox("π Show All Movies in Database"):
st.subheader("Movie Database")
df = pd.DataFrame(SAMPLE_MOVIES)
st.dataframe(df)
# Reset button
if st.button("π Reset Database"):
st.session_state.collection = None
st.session_state.setup_done = False
st.rerun()
# Installation and deployment guide
def show_guides():
col1, col2 = st.columns(2)
with col1:
with st.expander("π Installation Guide"):
st.markdown("""
**Step 1: Install Libraries**
```bash
pip install streamlit boto3 chromadb pandas
```
**Step 2: Setup AWS**
```bash
aws configure
```
**Step 3: Run Locally**
```bash
streamlit run bollywood_rag.py
```
""")
with col2:
with st.expander("π Deploy to Hugging Face"):
st.markdown("""
**Step 1: Create files**
- `app.py` (this code)
- `requirements.txt`
- `README.md`
**Step 2: requirements.txt**
```
streamlit
boto3
chromadb
pandas
```
**Step 3: Deploy**
1. Push to GitHub
2. Connect to Hugging Face Spaces
3. Select Streamlit SDK
4. Add AWS secrets in settings
""")
# Run the app
if __name__ == "__main__":
show_guides()
main() |