Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,64 +1,447 @@
|
|
1 |
-
import
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
-
|
5 |
-
|
6 |
-
"""
|
7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
|
|
63 |
if __name__ == "__main__":
|
64 |
-
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import boto3
|
3 |
+
import json
|
4 |
+
import chromadb
|
5 |
+
import pandas as pd
|
6 |
+
import time
|
7 |
+
import re
|
8 |
+
from datetime import datetime
|
9 |
|
10 |
+
# Sample Bollywood movies data (simplified for demo)
|
11 |
+
SAMPLE_MOVIES = [
|
12 |
+
{"title": "Sholay", "year": 1975, "genre": "Action", "director": "Ramesh Sippy",
|
13 |
+
"plot": "Two criminals are hired by a retired police officer to capture a bandit terrorizing a village."},
|
14 |
+
{"title": "Dilwale Dulhania Le Jayenge", "year": 1995, "genre": "Romance", "director": "Aditya Chopra",
|
15 |
+
"plot": "A young man and woman fall in love during a trip to Europe, but face family opposition."},
|
16 |
+
{"title": "Lagaan", "year": 2001, "genre": "Drama", "director": "Ashutosh Gowariker",
|
17 |
+
"plot": "Villagers accept a challenge from British officers to play cricket to avoid paying tax."},
|
18 |
+
{"title": "3 Idiots", "year": 2009, "genre": "Comedy", "director": "Rajkumar Hirani",
|
19 |
+
"plot": "Two friends search for their missing college friend and recall their engineering days."},
|
20 |
+
{"title": "Dangal", "year": 2016, "genre": "Sports", "director": "Nitesh Tiwari",
|
21 |
+
"plot": "A former wrestler trains his daughters to become world-class wrestlers."},
|
22 |
+
{"title": "Anand", "year": 1971, "genre": "Drama", "director": "Hrishikesh Mukherjee",
|
23 |
+
"plot": "A terminally ill man spreads joy and teaches the meaning of life to a doctor."},
|
24 |
+
{"title": "Golmaal", "year": 1979, "genre": "Comedy", "director": "Hrishikesh Mukherjee",
|
25 |
+
"plot": "A man creates chaos by lying about his identity to get a job."},
|
26 |
+
{"title": "Chupke Chupke", "year": 1975, "genre": "Comedy", "director": "Hrishikesh Mukherjee",
|
27 |
+
"plot": "A newlywed plays pranks on his wife's family by pretending to be someone else."},
|
28 |
+
{"title": "Don", "year": 1978, "genre": "Action", "director": "Chandra Barot",
|
29 |
+
"plot": "A police officer impersonates a crime boss to infiltrate his gang."},
|
30 |
+
{"title": "Andaz Apna Apna", "year": 1994, "genre": "Comedy", "director": "Rajkumar Santoshi",
|
31 |
+
"plot": "Two friends compete to marry a wealthy heiress but get caught up in a kidnapping plot."},
|
32 |
+
{"title": "Mughal-E-Azam", "year": 1960, "genre": "Romance", "director": "K. Asif",
|
33 |
+
"plot": "A Mughal prince falls in love with a court dancer, defying his father the emperor."},
|
34 |
+
{"title": "Deewaar", "year": 1975, "genre": "Action", "director": "Yash Chopra",
|
35 |
+
"plot": "Two brothers choose different paths in life - one becomes a police officer, the other a criminal."},
|
36 |
+
{"title": "Queen", "year": 2013, "genre": "Comedy", "director": "Vikas Bahl",
|
37 |
+
"plot": "A woman goes on her honeymoon alone after her wedding is called off."},
|
38 |
+
{"title": "Zindagi Na Milegi Dobara", "year": 2011, "genre": "Adventure", "director": "Zoya Akhtar",
|
39 |
+
"plot": "Three friends go on a bachelor trip to Spain and face their fears."},
|
40 |
+
{"title": "Taare Zameen Par", "year": 2007, "genre": "Drama", "director": "Aamir Khan",
|
41 |
+
"plot": "An art teacher helps a dyslexic child overcome his learning difficulties."},
|
42 |
+
{"title": "Rang De Basanti", "year": 2006, "genre": "Drama", "director": "Rakeysh Omprakash Mehra",
|
43 |
+
"plot": "College students making a documentary about freedom fighters become revolutionaries themselves."},
|
44 |
+
{"title": "Gol Maal", "year": 1979, "genre": "Comedy", "director": "Hrishikesh Mukherjee",
|
45 |
+
"plot": "A young man lies about having a mustache to keep his job with a strict boss."},
|
46 |
+
{"title": "Namak Haraam", "year": 1973, "genre": "Drama", "director": "Hrishikesh Mukherjee",
|
47 |
+
"plot": "A friendship is tested when one friend betrays the other for money and power."},
|
48 |
+
{"title": "Kuch Kuch Hota Hai", "year": 1998, "genre": "Romance", "director": "Karan Johar",
|
49 |
+
"plot": "A man's daughter tries to reunite him with his college sweetheart."},
|
50 |
+
{"title": "My Name is Khan", "year": 2010, "genre": "Drama", "director": "Karan Johar",
|
51 |
+
"plot": "A man with Asperger's syndrome embarks on a journey to meet the President of the United States."}
|
52 |
+
]
|
53 |
|
54 |
+
# Simple function to connect to AWS Bedrock
|
55 |
+
def connect_to_bedrock():
|
56 |
+
try:
|
57 |
+
client = boto3.client('bedrock-runtime', region_name='us-east-1')
|
58 |
+
return client
|
59 |
+
except:
|
60 |
+
st.error("β οΈ AWS Bedrock not configured. Using mock responses for demo.")
|
61 |
+
return None
|
62 |
|
63 |
+
# Get embeddings from Bedrock
|
64 |
+
def get_embeddings(bedrock_client, text):
|
65 |
+
if not bedrock_client:
|
66 |
+
# Return dummy embedding for demo
|
67 |
+
import random
|
68 |
+
return [random.random() for _ in range(1536)]
|
69 |
+
|
70 |
+
try:
|
71 |
+
body = json.dumps({"inputText": text})
|
72 |
+
response = bedrock_client.invoke_model(
|
73 |
+
modelId="amazon.titan-embed-text-v1",
|
74 |
+
body=body
|
75 |
+
)
|
76 |
+
result = json.loads(response['body'].read())
|
77 |
+
return result['embedding']
|
78 |
+
except:
|
79 |
+
# Return dummy embedding if API fails
|
80 |
+
import random
|
81 |
+
return [random.random() for _ in range(1536)]
|
82 |
|
83 |
+
# Create movie documents and store in ChromaDB
|
84 |
+
def setup_movie_database(bedrock_client):
|
85 |
+
st.write("π¬ Setting up Bollywood movies database...")
|
86 |
+
|
87 |
+
# Create ChromaDB client
|
88 |
+
chroma_client = chromadb.Client()
|
89 |
+
|
90 |
+
# Create or recreate collection
|
91 |
+
try:
|
92 |
+
chroma_client.delete_collection("bollywood_movies")
|
93 |
+
except:
|
94 |
+
pass
|
95 |
+
|
96 |
+
collection = chroma_client.create_collection("bollywood_movies")
|
97 |
+
|
98 |
+
# Prepare data for ChromaDB
|
99 |
+
ids = []
|
100 |
+
documents = []
|
101 |
+
metadatas = []
|
102 |
+
embeddings = []
|
103 |
+
|
104 |
+
progress_bar = st.progress(0)
|
105 |
+
|
106 |
+
for i, movie in enumerate(SAMPLE_MOVIES):
|
107 |
+
# Create document text
|
108 |
+
doc_text = f"Title: {movie['title']}\nYear: {movie['year']}\nGenre: {movie['genre']}\nDirector: {movie['director']}\nPlot: {movie['plot']}"
|
109 |
+
|
110 |
+
# Get embedding
|
111 |
+
embedding = get_embeddings(bedrock_client, doc_text)
|
112 |
+
|
113 |
+
# Prepare data
|
114 |
+
ids.append(str(i))
|
115 |
+
documents.append(doc_text)
|
116 |
+
metadatas.append({
|
117 |
+
'title': movie['title'],
|
118 |
+
'year': movie['year'],
|
119 |
+
'genre': movie['genre'].lower(),
|
120 |
+
'director': movie['director'].lower(),
|
121 |
+
'decade': f"{(movie['year'] // 10) * 10}s"
|
122 |
+
})
|
123 |
+
embeddings.append(embedding)
|
124 |
+
|
125 |
+
progress_bar.progress((i + 1) / len(SAMPLE_MOVIES))
|
126 |
+
|
127 |
+
# Add to ChromaDB
|
128 |
+
collection.add(
|
129 |
+
ids=ids,
|
130 |
+
documents=documents,
|
131 |
+
metadatas=metadatas,
|
132 |
+
embeddings=embeddings
|
133 |
+
)
|
134 |
+
|
135 |
+
st.success(f"β
Added {len(SAMPLE_MOVIES)} movies to database!")
|
136 |
+
return collection
|
137 |
|
138 |
+
# Simple query filter detection
|
139 |
+
def detect_filters(query):
|
140 |
+
query_lower = query.lower()
|
141 |
+
filters = {}
|
142 |
+
|
143 |
+
# Genre detection
|
144 |
+
genres = ['action', 'comedy', 'drama', 'romance', 'sports', 'adventure']
|
145 |
+
for genre in genres:
|
146 |
+
if genre in query_lower:
|
147 |
+
filters['genre'] = genre
|
148 |
+
break
|
149 |
+
|
150 |
+
# Decade detection
|
151 |
+
decades = ['1960s', '1970s', '1980s', '1990s', '2000s', '2010s']
|
152 |
+
for decade in decades:
|
153 |
+
if decade in query_lower:
|
154 |
+
filters['decade'] = decade
|
155 |
+
break
|
156 |
+
|
157 |
+
# Year detection
|
158 |
+
years = re.findall(r'\b(19\d{2}|20\d{2})\b', query)
|
159 |
+
if years:
|
160 |
+
year = int(years[0])
|
161 |
+
filters['decade'] = f"{(year // 10) * 10}s"
|
162 |
+
|
163 |
+
# Director detection (simple)
|
164 |
+
directors = ['hrishikesh mukherjee', 'rajkumar hirani', 'aamir khan', 'yash chopra']
|
165 |
+
for director in directors:
|
166 |
+
if director in query_lower:
|
167 |
+
filters['director'] = director
|
168 |
+
break
|
169 |
+
|
170 |
+
return filters
|
171 |
|
172 |
+
# Retrieve without metadata filter
|
173 |
+
def retrieve_without_filter(collection, bedrock_client, query, top_k=5):
|
174 |
+
start_time = time.time()
|
175 |
+
|
176 |
+
# Get query embedding
|
177 |
+
query_embedding = get_embeddings(bedrock_client, query)
|
178 |
+
|
179 |
+
# Search without filters
|
180 |
+
results = collection.query(
|
181 |
+
query_embeddings=[query_embedding],
|
182 |
+
n_results=top_k
|
183 |
+
)
|
184 |
+
|
185 |
+
end_time = time.time()
|
186 |
+
|
187 |
+
# Format results
|
188 |
+
movies = []
|
189 |
+
for i in range(len(results['documents'][0])):
|
190 |
+
movies.append({
|
191 |
+
'document': results['documents'][0][i],
|
192 |
+
'metadata': results['metadatas'][0][i],
|
193 |
+
'distance': results['distances'][0][i]
|
194 |
+
})
|
195 |
+
|
196 |
+
return movies, end_time - start_time
|
197 |
|
198 |
+
# Retrieve with metadata filter
|
199 |
+
def retrieve_with_filter(collection, bedrock_client, query, filters, top_k=5):
|
200 |
+
start_time = time.time()
|
201 |
+
|
202 |
+
# Get query embedding
|
203 |
+
query_embedding = get_embeddings(bedrock_client, query)
|
204 |
+
|
205 |
+
# Create where clause for filtering
|
206 |
+
where_clause = {}
|
207 |
+
for key, value in filters.items():
|
208 |
+
where_clause[key] = value
|
209 |
+
|
210 |
+
# Search with filters
|
211 |
+
try:
|
212 |
+
results = collection.query(
|
213 |
+
query_embeddings=[query_embedding],
|
214 |
+
n_results=top_k,
|
215 |
+
where=where_clause
|
216 |
+
)
|
217 |
+
except:
|
218 |
+
# If filtering fails, fall back to no filter
|
219 |
+
results = collection.query(
|
220 |
+
query_embeddings=[query_embedding],
|
221 |
+
n_results=top_k
|
222 |
+
)
|
223 |
+
|
224 |
+
end_time = time.time()
|
225 |
+
|
226 |
+
# Format results
|
227 |
+
movies = []
|
228 |
+
for i in range(len(results['documents'][0])):
|
229 |
+
movies.append({
|
230 |
+
'document': results['documents'][0][i],
|
231 |
+
'metadata': results['metadatas'][0][i],
|
232 |
+
'distance': results['distances'][0][i]
|
233 |
+
})
|
234 |
+
|
235 |
+
return movies, end_time - start_time
|
236 |
|
237 |
+
# Generate answer using Bedrock
|
238 |
+
def generate_answer(bedrock_client, query, movies):
|
239 |
+
if not bedrock_client:
|
240 |
+
return "π¬ Based on the retrieved movies, here are some recommendations that match your query!"
|
241 |
+
|
242 |
+
# Create context from movies
|
243 |
+
context = "\n\n".join([movie['document'] for movie in movies])
|
244 |
+
|
245 |
+
prompt = f"""
|
246 |
+
Based on the following Bollywood movies information, please answer the user's question.
|
247 |
+
|
248 |
+
Question: {query}
|
249 |
+
|
250 |
+
Movies Information:
|
251 |
+
{context}
|
252 |
+
|
253 |
+
Please provide a helpful and informative answer about the movies.
|
254 |
+
"""
|
255 |
+
|
256 |
+
try:
|
257 |
+
body = json.dumps({
|
258 |
+
"anthropic_version": "bedrock-2023-05-31",
|
259 |
+
"max_tokens": 400,
|
260 |
+
"messages": [{"role": "user", "content": prompt}]
|
261 |
+
})
|
262 |
+
|
263 |
+
response = bedrock_client.invoke_model(
|
264 |
+
modelId="anthropic.claude-3-haiku-20240307-v1:0",
|
265 |
+
body=body
|
266 |
+
)
|
267 |
+
|
268 |
+
result = json.loads(response['body'].read())
|
269 |
+
return result['content'][0]['text']
|
270 |
+
except:
|
271 |
+
return "π¬ Based on the retrieved movies, here are some great recommendations that match your query!"
|
272 |
|
273 |
+
# Main app
|
274 |
+
def main():
|
275 |
+
st.title("π¬ Bollywood Movies RAG with Metadata Filtering")
|
276 |
+
st.write("Ask questions about Bollywood movies and see how metadata filtering speeds up retrieval!")
|
277 |
+
|
278 |
+
# Initialize session state
|
279 |
+
if 'collection' not in st.session_state:
|
280 |
+
st.session_state.collection = None
|
281 |
+
if 'setup_done' not in st.session_state:
|
282 |
+
st.session_state.setup_done = False
|
283 |
+
|
284 |
+
# Setup section
|
285 |
+
if not st.session_state.setup_done:
|
286 |
+
st.subheader("π οΈ Setup Movie Database")
|
287 |
+
|
288 |
+
if st.button("π Load Bollywood Movies Data"):
|
289 |
+
try:
|
290 |
+
bedrock_client = connect_to_bedrock()
|
291 |
+
collection = setup_movie_database(bedrock_client)
|
292 |
+
st.session_state.collection = collection
|
293 |
+
st.session_state.bedrock_client = bedrock_client
|
294 |
+
st.session_state.setup_done = True
|
295 |
+
st.balloons()
|
296 |
+
except Exception as e:
|
297 |
+
st.error(f"β Setup failed: {str(e)}")
|
298 |
+
|
299 |
+
else:
|
300 |
+
st.success("β
Movie database is ready!")
|
301 |
+
|
302 |
+
# Sample queries
|
303 |
+
st.subheader("π Try These Sample Queries")
|
304 |
+
sample_queries = [
|
305 |
+
"What are some good action movies?",
|
306 |
+
"Tell me a few comedy movies from the 1970s",
|
307 |
+
"What is the movie Sholay about?",
|
308 |
+
"Tell me a few movies directed by Hrishikesh Mukherjee",
|
309 |
+
"What are some romantic movies from the 1990s?"
|
310 |
+
]
|
311 |
+
|
312 |
+
query_option = st.radio("Choose a query:", ["Custom Query"] + sample_queries)
|
313 |
+
|
314 |
+
if query_option == "Custom Query":
|
315 |
+
query = st.text_input("Enter your question about Bollywood movies:")
|
316 |
+
else:
|
317 |
+
query = query_option
|
318 |
+
st.write(f"Selected: **{query}**")
|
319 |
+
|
320 |
+
if query:
|
321 |
+
if st.button("π Search Movies"):
|
322 |
+
try:
|
323 |
+
bedrock_client = st.session_state.bedrock_client
|
324 |
+
collection = st.session_state.collection
|
325 |
+
|
326 |
+
# Detect filters
|
327 |
+
filters = detect_filters(query)
|
328 |
+
|
329 |
+
st.write("---")
|
330 |
+
|
331 |
+
# Method 1: Without metadata filter
|
332 |
+
st.subheader("π Method 1: Without Metadata Filter")
|
333 |
+
movies_no_filter, time_no_filter = retrieve_without_filter(collection, bedrock_client, query)
|
334 |
+
|
335 |
+
st.write(f"β±οΈ **Time taken: {time_no_filter:.4f} seconds**")
|
336 |
+
st.write("**Retrieved Movies:**")
|
337 |
+
for i, movie in enumerate(movies_no_filter, 1):
|
338 |
+
with st.expander(f"{i}. {movie['metadata']['title']} ({movie['metadata']['year']})"):
|
339 |
+
st.write(f"**Genre:** {movie['metadata']['genre'].title()}")
|
340 |
+
st.write(f"**Director:** {movie['metadata']['director'].title()}")
|
341 |
+
st.write(f"**Distance:** {movie['distance']:.4f}")
|
342 |
+
|
343 |
+
# Method 2: With metadata filter
|
344 |
+
st.subheader("π― Method 2: With Metadata Filter")
|
345 |
+
|
346 |
+
if filters:
|
347 |
+
st.write(f"**Detected Filters:** {filters}")
|
348 |
+
movies_with_filter, time_with_filter = retrieve_with_filter(collection, bedrock_client, query, filters)
|
349 |
+
|
350 |
+
st.write(f"β±οΈ **Time taken: {time_with_filter:.4f} seconds**")
|
351 |
+
st.write("**Filtered Retrieved Movies:**")
|
352 |
+
for i, movie in enumerate(movies_with_filter, 1):
|
353 |
+
with st.expander(f"{i}. {movie['metadata']['title']} ({movie['metadata']['year']})"):
|
354 |
+
st.write(f"**Genre:** {movie['metadata']['genre'].title()}")
|
355 |
+
st.write(f"**Director:** {movie['metadata']['director'].title()}")
|
356 |
+
st.write(f"**Distance:** {movie['distance']:.4f}")
|
357 |
+
|
358 |
+
# Performance comparison
|
359 |
+
st.subheader("β‘ Performance Comparison")
|
360 |
+
col1, col2, col3 = st.columns(3)
|
361 |
+
with col1:
|
362 |
+
st.metric("Without Filter", f"{time_no_filter:.4f}s")
|
363 |
+
with col2:
|
364 |
+
st.metric("With Filter", f"{time_with_filter:.4f}s")
|
365 |
+
with col3:
|
366 |
+
speedup = ((time_no_filter - time_with_filter) / time_no_filter) * 100 if time_no_filter > 0 else 0
|
367 |
+
st.metric("Speedup", f"{speedup:.1f}%")
|
368 |
+
|
369 |
+
# Generate final answer
|
370 |
+
st.subheader("π€ AI Generated Answer")
|
371 |
+
answer = generate_answer(bedrock_client, query, movies_with_filter)
|
372 |
+
st.success(answer)
|
373 |
+
|
374 |
+
else:
|
375 |
+
st.write("**No specific filters detected** - using general retrieval")
|
376 |
+
st.write(f"β±οΈ **Time taken: {time_no_filter:.4f} seconds**")
|
377 |
+
|
378 |
+
# Generate answer with no filter results
|
379 |
+
st.subheader("π€ AI Generated Answer")
|
380 |
+
answer = generate_answer(bedrock_client, query, movies_no_filter)
|
381 |
+
st.success(answer)
|
382 |
+
|
383 |
+
except Exception as e:
|
384 |
+
st.error(f"β Search failed: {str(e)}")
|
385 |
+
|
386 |
+
# Show movie database
|
387 |
+
if st.checkbox("π Show All Movies in Database"):
|
388 |
+
st.subheader("Movie Database")
|
389 |
+
df = pd.DataFrame(SAMPLE_MOVIES)
|
390 |
+
st.dataframe(df)
|
391 |
+
|
392 |
+
# Reset button
|
393 |
+
if st.button("π Reset Database"):
|
394 |
+
st.session_state.collection = None
|
395 |
+
st.session_state.setup_done = False
|
396 |
+
st.rerun()
|
397 |
|
398 |
+
# Installation and deployment guide
|
399 |
+
def show_guides():
|
400 |
+
col1, col2 = st.columns(2)
|
401 |
+
|
402 |
+
with col1:
|
403 |
+
with st.expander("π Installation Guide"):
|
404 |
+
st.markdown("""
|
405 |
+
**Step 1: Install Libraries**
|
406 |
+
```bash
|
407 |
+
pip install streamlit boto3 chromadb pandas
|
408 |
+
```
|
409 |
+
|
410 |
+
**Step 2: Setup AWS**
|
411 |
+
```bash
|
412 |
+
aws configure
|
413 |
+
```
|
414 |
+
|
415 |
+
**Step 3: Run Locally**
|
416 |
+
```bash
|
417 |
+
streamlit run bollywood_rag.py
|
418 |
+
```
|
419 |
+
""")
|
420 |
+
|
421 |
+
with col2:
|
422 |
+
with st.expander("π Deploy to Hugging Face"):
|
423 |
+
st.markdown("""
|
424 |
+
**Step 1: Create files**
|
425 |
+
- `app.py` (this code)
|
426 |
+
- `requirements.txt`
|
427 |
+
- `README.md`
|
428 |
+
|
429 |
+
**Step 2: requirements.txt**
|
430 |
+
```
|
431 |
+
streamlit
|
432 |
+
boto3
|
433 |
+
chromadb
|
434 |
+
pandas
|
435 |
+
```
|
436 |
+
|
437 |
+
**Step 3: Deploy**
|
438 |
+
1. Push to GitHub
|
439 |
+
2. Connect to Hugging Face Spaces
|
440 |
+
3. Select Streamlit SDK
|
441 |
+
4. Add AWS secrets in settings
|
442 |
+
""")
|
443 |
|
444 |
+
# Run the app
|
445 |
if __name__ == "__main__":
|
446 |
+
show_guides()
|
447 |
+
main()
|