Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,12 +5,29 @@ import pandas as pd
|
|
5 |
import torch
|
6 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
7 |
|
8 |
-
# 1) Load
|
9 |
df = pd.read_csv('synthetic_profit.csv')
|
10 |
-
# Ensure numeric Profit for aggregation
|
11 |
-
df['Profit'] = pd.to_numeric(df['Profit'], errors='coerce')
|
12 |
|
13 |
-
# 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
MODEL_ID = "microsoft/tapex-base-finetuned-wikisql"
|
15 |
device = 0 if torch.cuda.is_available() else -1
|
16 |
|
@@ -25,40 +42,35 @@ table_qa = pipeline(
|
|
25 |
device=device,
|
26 |
)
|
27 |
|
28 |
-
#
|
29 |
def answer_profitability(question: str) -> str:
|
30 |
-
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
if "total profit" in q_lower and "region" in q_lower:
|
34 |
-
agg = df.groupby('Region', as_index=False)['Profit'].sum()
|
35 |
-
return "\n".join(f"{row.Region}: {row.Profit}" for row in agg.itertuples())
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
table = df_str.to_dict(orient="records")
|
40 |
|
|
|
41 |
try:
|
42 |
-
out = table_qa(table=table, query=
|
43 |
return out.get("answer", "No answer found.")
|
44 |
-
except IndexError as e:
|
45 |
-
# Catch the 'index out of range' and fallback to pandas for any region/group queries
|
46 |
-
if "index out of range" in str(e):
|
47 |
-
agg = df.groupby('Region', as_index=False)['Profit'].sum()
|
48 |
-
return "\n".join(f"{row.Region}: {row.Profit}" for row in agg.itertuples())
|
49 |
-
return f"Error: {e}"
|
50 |
except Exception as e:
|
51 |
return f"Error: {e}"
|
52 |
|
53 |
-
#
|
54 |
iface = gr.Interface(
|
55 |
fn=answer_profitability,
|
56 |
inputs=gr.Textbox(lines=2, placeholder="Ask a question about profitability…"),
|
57 |
outputs="text",
|
58 |
-
title="SAP Profitability Q&A (TAPEX
|
59 |
description=(
|
60 |
-
"
|
61 |
-
"
|
62 |
)
|
63 |
)
|
64 |
|
|
|
5 |
import torch
|
6 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
7 |
|
8 |
+
# 1) Load your synthetic profitability dataset
|
9 |
df = pd.read_csv('synthetic_profit.csv')
|
|
|
|
|
10 |
|
11 |
+
# 2) Ensure numeric columns for true aggregation (optional, but helps you verify sums)
|
12 |
+
for col in ["Revenue", "Profit", "ProfitMargin"]:
|
13 |
+
df[col] = pd.to_numeric(df[col], errors='coerce')
|
14 |
+
|
15 |
+
# 3) Build the schema description text
|
16 |
+
schema_lines = [f"- {col}: {dtype.name}" for col, dtype in df.dtypes.iteritems()]
|
17 |
+
schema_text = "Table schema:\n" + "\n".join(schema_lines)
|
18 |
+
|
19 |
+
# 4) Few-shot examples teaching SUM and AVERAGE patterns
|
20 |
+
example_block = """
|
21 |
+
Example 1
|
22 |
+
Q: Total profit by region?
|
23 |
+
A: Group “Profit” by “Region” and sum → EMEA: 30172183.37; APAC: 32301788.32; Latin America: 27585378.50; North America: 25473893.34
|
24 |
+
|
25 |
+
Example 2
|
26 |
+
Q: Average profit margin for Product B in Americas?
|
27 |
+
A: Filter Product=B & Region=Americas, take mean of “ProfitMargin” → 0.18
|
28 |
+
""".strip()
|
29 |
+
|
30 |
+
# 5) Model & pipeline setup
|
31 |
MODEL_ID = "microsoft/tapex-base-finetuned-wikisql"
|
32 |
device = 0 if torch.cuda.is_available() else -1
|
33 |
|
|
|
42 |
device=device,
|
43 |
)
|
44 |
|
45 |
+
# 6) QA function with schema-aware prompting
|
46 |
def answer_profitability(question: str) -> str:
|
47 |
+
# 6a) cast all cells to string for safety
|
48 |
+
table = df.astype(str).to_dict(orient="records")
|
49 |
+
|
50 |
+
# 6b) assemble the full prompt
|
51 |
+
prompt = f"""{schema_text}
|
52 |
|
53 |
+
{example_block}
|
|
|
|
|
|
|
54 |
|
55 |
+
Q: {question}
|
56 |
+
A:"""
|
|
|
57 |
|
58 |
+
# 6c) call TAPEX
|
59 |
try:
|
60 |
+
out = table_qa(table=table, query=prompt)
|
61 |
return out.get("answer", "No answer found.")
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
except Exception as e:
|
63 |
return f"Error: {e}"
|
64 |
|
65 |
+
# 7) Gradio interface
|
66 |
iface = gr.Interface(
|
67 |
fn=answer_profitability,
|
68 |
inputs=gr.Textbox(lines=2, placeholder="Ask a question about profitability…"),
|
69 |
outputs="text",
|
70 |
+
title="SAP Profitability Q&A (Schema-Aware TAPEX)",
|
71 |
description=(
|
72 |
+
"Every query is prefixed with your table’s schema and two few-shot examples, "
|
73 |
+
"so the model learns to SUM, AVERAGE, FILTER, etc., without extra Python code."
|
74 |
)
|
75 |
)
|
76 |
|