Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,20 +5,18 @@ import pandas as pd
|
|
| 5 |
import torch
|
| 6 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
| 7 |
|
| 8 |
-
# 1) Load your synthetic profitability dataset
|
| 9 |
df = pd.read_csv('synthetic_profit.csv')
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
# 2)
|
| 12 |
MODEL_ID = "microsoft/tapex-base-finetuned-wikisql"
|
|
|
|
| 13 |
|
| 14 |
-
# 3) Set device: GPU if available, else CPU
|
| 15 |
-
device = 0 if torch.cuda.is_available() else -1
|
| 16 |
-
|
| 17 |
-
# 4) Load tokenizer and model
|
| 18 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 19 |
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_ID)
|
| 20 |
|
| 21 |
-
# 5) Build the table-question-answering pipeline
|
| 22 |
table_qa = pipeline(
|
| 23 |
"table-question-answering",
|
| 24 |
model=model,
|
|
@@ -27,18 +25,32 @@ table_qa = pipeline(
|
|
| 27 |
device=device,
|
| 28 |
)
|
| 29 |
|
| 30 |
-
#
|
| 31 |
def answer_profitability(question: str) -> str:
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
df_str = df.astype(str)
|
| 34 |
table = df_str.to_dict(orient="records")
|
|
|
|
| 35 |
try:
|
| 36 |
out = table_qa(table=table, query=question)
|
| 37 |
return out.get("answer", "No answer found.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
except Exception as e:
|
| 39 |
return f"Error: {e}"
|
| 40 |
|
| 41 |
-
#
|
| 42 |
iface = gr.Interface(
|
| 43 |
fn=answer_profitability,
|
| 44 |
inputs=gr.Textbox(lines=2, placeholder="Ask a question about profitability…"),
|
|
@@ -46,10 +58,9 @@ iface = gr.Interface(
|
|
| 46 |
title="SAP Profitability Q&A (TAPEX-Base)",
|
| 47 |
description=(
|
| 48 |
"Free-form questions on the synthetic profitability dataset, "
|
| 49 |
-
"powered
|
| 50 |
)
|
| 51 |
)
|
| 52 |
|
| 53 |
-
# 8) Launch the app
|
| 54 |
if __name__ == "__main__":
|
| 55 |
iface.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
|
| 5 |
import torch
|
| 6 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
| 7 |
|
| 8 |
+
# 1) Load and preprocess your synthetic profitability dataset
|
| 9 |
df = pd.read_csv('synthetic_profit.csv')
|
| 10 |
+
# Ensure numeric Profit for aggregation
|
| 11 |
+
df['Profit'] = pd.to_numeric(df['Profit'], errors='coerce')
|
| 12 |
|
| 13 |
+
# 2) Model setup
|
| 14 |
MODEL_ID = "microsoft/tapex-base-finetuned-wikisql"
|
| 15 |
+
device = 0 if torch.cuda.is_available() else -1
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
|
| 18 |
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_ID)
|
| 19 |
|
|
|
|
| 20 |
table_qa = pipeline(
|
| 21 |
"table-question-answering",
|
| 22 |
model=model,
|
|
|
|
| 25 |
device=device,
|
| 26 |
)
|
| 27 |
|
| 28 |
+
# 3) QA function with manual fallback for region‐based aggregations
|
| 29 |
def answer_profitability(question: str) -> str:
|
| 30 |
+
q_lower = question.lower()
|
| 31 |
+
|
| 32 |
+
# Fallback: if user asks for total profit by region, do it in pandas
|
| 33 |
+
if "total profit" in q_lower and "region" in q_lower:
|
| 34 |
+
agg = df.groupby('Region', as_index=False)['Profit'].sum()
|
| 35 |
+
return "\n".join(f"{row.Region}: {row.Profit}" for row in agg.itertuples())
|
| 36 |
+
|
| 37 |
+
# Otherwise, cast all cells to string and try TAPEX
|
| 38 |
df_str = df.astype(str)
|
| 39 |
table = df_str.to_dict(orient="records")
|
| 40 |
+
|
| 41 |
try:
|
| 42 |
out = table_qa(table=table, query=question)
|
| 43 |
return out.get("answer", "No answer found.")
|
| 44 |
+
except IndexError as e:
|
| 45 |
+
# Catch the 'index out of range' and fallback to pandas for any region/group queries
|
| 46 |
+
if "index out of range" in str(e):
|
| 47 |
+
agg = df.groupby('Region', as_index=False)['Profit'].sum()
|
| 48 |
+
return "\n".join(f"{row.Region}: {row.Profit}" for row in agg.itertuples())
|
| 49 |
+
return f"Error: {e}"
|
| 50 |
except Exception as e:
|
| 51 |
return f"Error: {e}"
|
| 52 |
|
| 53 |
+
# 4) Gradio interface
|
| 54 |
iface = gr.Interface(
|
| 55 |
fn=answer_profitability,
|
| 56 |
inputs=gr.Textbox(lines=2, placeholder="Ask a question about profitability…"),
|
|
|
|
| 58 |
title="SAP Profitability Q&A (TAPEX-Base)",
|
| 59 |
description=(
|
| 60 |
"Free-form questions on the synthetic profitability dataset, "
|
| 61 |
+
"powered by microsoft/tapex-base-finetuned-wikisql with pandas fallbacks."
|
| 62 |
)
|
| 63 |
)
|
| 64 |
|
|
|
|
| 65 |
if __name__ == "__main__":
|
| 66 |
iface.launch(server_name="0.0.0.0", server_port=7860)
|