Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,12 +8,13 @@ from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
|
8 |
# 1) Load your synthetic profitability dataset
|
9 |
df = pd.read_csv('synthetic_profit.csv')
|
10 |
|
11 |
-
# 2) Ensure numeric columns for true aggregation
|
12 |
for col in ["Revenue", "Profit", "ProfitMargin"]:
|
13 |
df[col] = pd.to_numeric(df[col], errors='coerce')
|
14 |
|
15 |
# 3) Build the schema description text
|
16 |
-
|
|
|
17 |
schema_text = "Table schema:\n" + "\n".join(schema_lines)
|
18 |
|
19 |
# 4) Few-shot examples teaching SUM and AVERAGE patterns
|
@@ -44,10 +45,10 @@ table_qa = pipeline(
|
|
44 |
|
45 |
# 6) QA function with schema-aware prompting
|
46 |
def answer_profitability(question: str) -> str:
|
47 |
-
#
|
48 |
table = df.astype(str).to_dict(orient="records")
|
49 |
|
50 |
-
#
|
51 |
prompt = f"""{schema_text}
|
52 |
|
53 |
{example_block}
|
@@ -55,7 +56,6 @@ def answer_profitability(question: str) -> str:
|
|
55 |
Q: {question}
|
56 |
A:"""
|
57 |
|
58 |
-
# 6c) call TAPEX
|
59 |
try:
|
60 |
out = table_qa(table=table, query=prompt)
|
61 |
return out.get("answer", "No answer found.")
|
@@ -74,5 +74,6 @@ iface = gr.Interface(
|
|
74 |
)
|
75 |
)
|
76 |
|
|
|
77 |
if __name__ == "__main__":
|
78 |
iface.launch(server_name="0.0.0.0", server_port=7860)
|
|
|
8 |
# 1) Load your synthetic profitability dataset
|
9 |
df = pd.read_csv('synthetic_profit.csv')
|
10 |
|
11 |
+
# 2) Ensure numeric columns for true aggregation
|
12 |
for col in ["Revenue", "Profit", "ProfitMargin"]:
|
13 |
df[col] = pd.to_numeric(df[col], errors='coerce')
|
14 |
|
15 |
# 3) Build the schema description text
|
16 |
+
# ← replaced .iteritems() with .items() here
|
17 |
+
schema_lines = [f"- {col}: {dtype.name}" for col, dtype in df.dtypes.items()]
|
18 |
schema_text = "Table schema:\n" + "\n".join(schema_lines)
|
19 |
|
20 |
# 4) Few-shot examples teaching SUM and AVERAGE patterns
|
|
|
45 |
|
46 |
# 6) QA function with schema-aware prompting
|
47 |
def answer_profitability(question: str) -> str:
|
48 |
+
# cast all cells to string for safety
|
49 |
table = df.astype(str).to_dict(orient="records")
|
50 |
|
51 |
+
# assemble the full prompt
|
52 |
prompt = f"""{schema_text}
|
53 |
|
54 |
{example_block}
|
|
|
56 |
Q: {question}
|
57 |
A:"""
|
58 |
|
|
|
59 |
try:
|
60 |
out = table_qa(table=table, query=prompt)
|
61 |
return out.get("answer", "No answer found.")
|
|
|
74 |
)
|
75 |
)
|
76 |
|
77 |
+
# 8) Launch the app
|
78 |
if __name__ == "__main__":
|
79 |
iface.launch(server_name="0.0.0.0", server_port=7860)
|