File size: 10,531 Bytes
a76d7af bb36a8b 48e4b27 1b8934f 48e4b27 a76d7af 48e4b27 a76d7af 48e4b27 a76d7af 48e4b27 a76d7af 48e4b27 a76d7af 48e4b27 a76d7af 48e4b27 2ac5926 48e4b27 a76d7af 48e4b27 a76d7af 48e4b27 cec4e75 48e4b27 e67d03e 8866c74 48e4b27 8866c74 48e4b27 a76d7af 48e4b27 a76d7af 48e4b27 1d56909 48e4b27 1d56909 48e4b27 d0ad761 48e4b27 0c56bcf 48e4b27 8866c74 48e4b27 8866c74 48e4b27 5938f28 664ea8a 48e4b27 664ea8a 48e4b27 664ea8a 48e4b27 664ea8a 48e4b27 664ea8a 48e4b27 664ea8a 48e4b27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import time
from datetime import datetime
import os, warnings, nltk, json, subprocess
import numpy as np
from nltk.stem import WordNetLemmatizer
from dotenv import load_dotenv
from sklearn.preprocessing import MinMaxScaler
os.environ['CURL_CA_BUNDLE'] = ""
warnings.filterwarnings('ignore')
nltk.download('wordnet')
load_dotenv()
from datasets import load_dataset
import bm25s
from bm25s.hf import BM25HF
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import FileResponse
from fastapi.staticfiles import StaticFiles
from schemas import *
from bs4 import BeautifulSoup
import requests
lemmatizer = WordNetLemmatizer()
spec_metadatas = load_dataset("OrganizedProgrammers/3GPPSpecMetadata", token=os.environ["HF_TOKEN"])
spec_contents = load_dataset("OrganizedProgrammers/3GPPSpecContent", token=os.environ["HF_TOKEN"])
tdoc_locations = load_dataset("OrganizedProgrammers/3GPPTDocLocation", token=os.environ["HF_TOKEN"])
bm25_index = BM25HF.load_from_hub("OrganizedProgrammers/3GPPBM25IndexSingle", load_corpus=True, token=os.environ["HF_TOKEN"])
spec_metadatas = spec_metadatas["train"].to_list()
spec_contents = spec_contents["train"].to_list()
tdoc_locations = tdoc_locations["train"].to_list()
def get_docs_from_url(url):
"""Get list of documents/directories from a URL"""
try:
response = requests.get(url, verify=False, timeout=10)
soup = BeautifulSoup(response.text, "html.parser")
return [item.get_text() for item in soup.select("tr td a")]
except Exception as e:
print(f"Error accessing {url}: {e}")
return []
def get_tdoc_url(doc_id):
for tdoc in tdoc_locations:
if tdoc["doc_id"] == doc_id:
return tdoc["url"]
def get_spec_url(document):
series = document.split(".")[0].zfill(2)
url = f"https://www.3gpp.org/ftp/Specs/archive/{series}_series/{document}"
versions = get_docs_from_url(url)
return url + "/" + versions[-1] if versions != [] else f"Specification {document} not found"
def get_document(spec_id: str, spec_title: str):
text = [f"{spec_id} - {spec_title}"]
for section in spec_contents:
if spec_id == section["doc_id"]:
text.extend([section['section'], section['content']])
return text
app = FastAPI(title="3GPP Document Finder Back-End", description="Backend for 3GPPDocFinder - Searching technical documents & specifications from 3GPP FTP server")
app.mount("/static", StaticFiles(directory="static"), name="static")
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@app.get("/")
def index():
return FileResponse(os.path.join('templates', 'index.html'))
@app.post("/find", response_model=DocResponse)
def find_document(request: DocRequest):
start_time = time.time()
document = request.doc_id
url = get_tdoc_url(document) if document[0].isalpha() else get_spec_url(document)
if "Specification" in url or "Document" in url:
raise HTTPException(status_code=404, detail=url)
version = url.split("/")[-1].replace(".zip", "").split("-")[-1]
scope = None
for spec in spec_metadatas:
if spec['id'] == document:
scope = spec['scope']
break
return DocResponse(
doc_id=document,
version=version,
url=url,
search_time=time.time() - start_time,
scope=scope
)
@app.post("/batch", response_model=BatchDocResponse)
def find_multiple_documents(request: BatchDocRequest):
start_time = time.time()
documents = request.doc_ids
results = {}
missing = []
for document in documents:
url = get_tdoc_url(document) if document[0].isalpha() else get_spec_url(document)
if "Specification" not in url and "Document" not in url:
results[document] = url
else:
missing.append(document)
return BatchDocResponse(
results=results,
missing=missing,
search_time=time.time()-start_time
)
@app.post("/search-spec", response_model=KeywordResponse)
def search_specification_by_keywords(request: KeywordRequest):
start_time = time.time()
boolSensitiveCase = request.case_sensitive
search_mode = request.search_mode
working_group = request.working_group
spec_type = request.spec_type
keywords = [string.lower() if boolSensitiveCase else string for string in request.keywords.split(",")]
print(keywords)
unique_specs = set()
results = []
if keywords == [""] and search_mode == "deep":
raise HTTPException(status_code=400, detail="You must enter keywords in deep search mode !")
for spec in spec_metadatas:
valid = False
if spec['id'] in unique_specs: continue
if spec.get('type', None) is None or (spec_type is not None and spec["type"] != spec_type): continue
if spec.get('working_group', None) is None or (working_group is not None and spec["working_group"] != working_group): continue
if search_mode == "deep":
contents = []
doc = get_document(spec["id"], spec["title"])
docValid = len(doc) > 1
if request.mode == "and":
string = f"{spec['id']}+-+{spec['title']}+-+{spec['type']}+-+{spec['version']}+-+{spec['working_group']}"
if all(keyword in (string.lower() if boolSensitiveCase else string) for keyword in keywords):
valid = True
if search_mode == "deep":
if docValid:
for x in range(1, len(doc) - 1, 2):
section_title = doc[x]
section_content = doc[x+1]
if "reference" not in section_title.lower() and "void" not in section_title.lower() and "annex" not in section_content.lower():
if all(keyword in (section_content.lower() if boolSensitiveCase else section_content) for keyword in keywords):
valid = True
contents.append({section_title: section_content})
elif request.mode == "or":
string = f"{spec['id']}+-+{spec['title']}+-+{spec['type']}+-+{spec['version']}+-+{spec['working_group']}"
if any(keyword in (string.lower() if boolSensitiveCase else string) for keyword in keywords):
valid = True
if search_mode == "deep":
if docValid:
for x in range(1, len(doc) - 1, 2):
section_title = doc[x]
section_content = doc[x+1]
if "reference" not in section_title.lower() and "void" not in section_title.lower() and "annex" not in section_content.lower():
if any(keyword in (section_content.lower() if boolSensitiveCase else section_content) for keyword in keywords):
valid = True
contents.append({section_title: section_content})
if valid:
spec_content = spec
if search_mode == "deep":
spec_content["contains"] = {k: v for d in contents for k, v in d.items()}
results.append(spec_content)
else:
unique_specs.add(spec['id'])
if len(results) > 0:
return KeywordResponse(
results=results,
search_time=time.time() - start_time
)
else:
raise HTTPException(status_code=404, detail="Specifications not found")
@app.post("/search-spec/experimental", response_model=KeywordResponse)
def bm25_search_specification(request: BM25KeywordRequest):
start_time = time.time()
working_group = request.working_group
spec_type = request.spec_type
threshold = request.threshold
query = request.keywords
results_out = []
query_tokens = bm25s.tokenize(query)
results, scores = bm25_index.retrieve(query_tokens, k=len(bm25_index.corpus))
print("BM25 raw scores:", scores)
def calculate_boosted_score(metadata, score, query):
title = set(metadata['title'].lower().split())
q = set(query.lower().split())
spec_id_presence = 0.5 if metadata['id'].lower() in q else 0
booster = len(q & title) * 0.5
return score + spec_id_presence + booster
spec_scores = {}
spec_indices = {}
spec_details = {}
for i in range(results.shape[1]):
doc = results[0, i]
score = scores[0, i]
spec = doc["metadata"]["id"]
boosted_score = calculate_boosted_score(doc['metadata'], score, query)
if spec not in spec_scores or boosted_score > spec_scores[spec]:
spec_scores[spec] = boosted_score
spec_indices[spec] = i
spec_details[spec] = {
'original_score': score,
'boosted_score': boosted_score,
'doc': doc
}
def normalize_scores(scores_dict):
if not scores_dict:
return {}
scores_array = np.array(list(scores_dict.values())).reshape(-1, 1)
scaler = MinMaxScaler()
normalized_scores = scaler.fit_transform(scores_array).flatten()
normalized_dict = {}
for i, spec in enumerate(scores_dict.keys()):
normalized_dict[spec] = normalized_scores[i]
return normalized_dict
normalized_scores = normalize_scores(spec_scores)
for spec in spec_details:
spec_details[spec]["normalized_score"] = normalized_scores[spec]
unique_specs = sorted(normalized_scores.keys(), key=lambda x: normalized_scores[x], reverse=True)
for rank, spec in enumerate(unique_specs, 1):
details = spec_details[spec]
metadata = details['doc']['metadata']
if metadata.get('type', None) is None or (spec_type is not None and metadata["type"] != spec_type):
continue
if metadata.get('working_group', None) is None or (working_group is not None and metadata["working_group"] != working_group):
continue
if details['normalized_score'] < threshold / 100:
break
results_out.append(metadata)
if len(results_out) > 0:
return KeywordResponse(
results=results_out,
search_time=time.time() - start_time
)
else:
raise HTTPException(status_code=404, detail="Specifications not found") |