V2 upload
Browse files- app.py +166 -537
- indexed_docs.json +0 -8
- requirements.txt +8 -17
- schemas.py +40 -0
- static/script.js +1 -26
app.py
CHANGED
@@ -1,462 +1,209 @@
|
|
1 |
-
from io import StringIO
|
2 |
-
import bm25s
|
3 |
-
import numpy as np
|
4 |
-
import pandas as pd
|
5 |
-
import faiss
|
6 |
-
import requests
|
7 |
-
from bs4 import BeautifulSoup
|
8 |
-
import json
|
9 |
-
import os
|
10 |
-
import traceback
|
11 |
-
import uuid
|
12 |
-
import zipfile
|
13 |
-
import io
|
14 |
-
import openai
|
15 |
-
import httpx
|
16 |
-
import subprocess
|
17 |
-
import os
|
18 |
-
import re
|
19 |
import time
|
20 |
from datetime import datetime
|
|
|
|
|
|
|
21 |
from dotenv import load_dotenv
|
22 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
from fastapi import FastAPI, HTTPException
|
24 |
from fastapi.middleware.cors import CORSMiddleware
|
25 |
-
import nltk
|
26 |
-
from nltk.stem import WordNetLemmatizer
|
27 |
from fastapi.responses import FileResponse
|
28 |
from fastapi.staticfiles import StaticFiles
|
29 |
-
from
|
30 |
-
from typing import Any, Dict, List, Literal, Optional
|
31 |
-
os.environ['CURL_CA_BUNDLE'] = ''
|
32 |
-
from sentence_transformers import SentenceTransformer
|
33 |
-
import warnings
|
34 |
-
|
35 |
-
warnings.filterwarnings("ignore")
|
36 |
-
|
37 |
-
from sklearn.preprocessing import MinMaxScaler
|
38 |
-
nltk.download("wordnet")
|
39 |
-
load_dotenv()
|
40 |
|
41 |
-
|
|
|
42 |
|
43 |
-
|
44 |
-
description="API to find 3GPP documents based on TSG document IDs")
|
45 |
|
46 |
-
|
|
|
|
|
|
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
]
|
51 |
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
app.add_middleware(
|
55 |
CORSMiddleware,
|
56 |
-
allow_origins=
|
57 |
allow_credentials=True,
|
58 |
allow_methods=["*"],
|
59 |
allow_headers=["*"],
|
60 |
)
|
61 |
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
series = doc_id.split(".")[0]
|
66 |
-
|
67 |
-
response = requests.get(
|
68 |
-
f"https://www.3gpp.org/ftp/Specs/archive/{series}_series/{doc_id}/{doc_id.replace('.', '')}-{version}.zip",
|
69 |
-
verify=False,
|
70 |
-
headers={"User-Agent": 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36'}
|
71 |
-
)
|
72 |
-
|
73 |
-
if response.status_code != 200:
|
74 |
-
raise Exception(f"Téléchargement du ZIP échoué pour {specification}-{version}")
|
75 |
-
|
76 |
-
zip_bytes = io.BytesIO(response.content)
|
77 |
-
|
78 |
-
with zipfile.ZipFile(zip_bytes) as zf:
|
79 |
-
for file_name in zf.namelist():
|
80 |
-
if file_name.endswith("zip"):
|
81 |
-
print("Another ZIP !")
|
82 |
-
zip_bytes = io.BytesIO(zf.read(file_name))
|
83 |
-
zf = zipfile.ZipFile(zip_bytes)
|
84 |
-
for file_name2 in zf.namelist():
|
85 |
-
if file_name2.endswith("doc") or file_name2.endswith("docx"):
|
86 |
-
if "cover" in file_name2.lower():
|
87 |
-
print("COVER !")
|
88 |
-
continue
|
89 |
-
ext = file_name2.split(".")[-1]
|
90 |
-
doc_bytes = zf.read(file_name2)
|
91 |
-
temp_id = str(uuid.uuid4())
|
92 |
-
input_path = f"/tmp/{temp_id}.{ext}"
|
93 |
-
output_path = f"/tmp/{temp_id}.txt"
|
94 |
-
|
95 |
-
with open(input_path, "wb") as f:
|
96 |
-
f.write(doc_bytes)
|
97 |
-
|
98 |
-
subprocess.run([
|
99 |
-
"libreoffice",
|
100 |
-
"--headless",
|
101 |
-
"--convert-to", "txt",
|
102 |
-
"--outdir", "/tmp",
|
103 |
-
input_path
|
104 |
-
], check=True)
|
105 |
-
|
106 |
-
with open(output_path, "r") as f:
|
107 |
-
txt_data = [line.strip() for line in f if line.strip()]
|
108 |
-
|
109 |
-
os.remove(input_path)
|
110 |
-
os.remove(output_path)
|
111 |
-
return txt_data
|
112 |
-
elif file_name.endswith("doc") or file_name.endswith("docx"):
|
113 |
-
if "cover" in file_name.lower():
|
114 |
-
print("COVER !")
|
115 |
-
continue
|
116 |
-
ext = file_name.split(".")[-1]
|
117 |
-
doc_bytes = zf.read(file_name)
|
118 |
-
temp_id = str(uuid.uuid4())
|
119 |
-
input_path = f"/tmp/{temp_id}.{ext}"
|
120 |
-
output_path = f"/tmp/{temp_id}.txt"
|
121 |
-
|
122 |
-
print("Ecriture")
|
123 |
-
with open(input_path, "wb") as f:
|
124 |
-
f.write(doc_bytes)
|
125 |
-
|
126 |
-
print("Convertissement")
|
127 |
-
subprocess.run([
|
128 |
-
"libreoffice",
|
129 |
-
"--headless",
|
130 |
-
"--convert-to", "txt",
|
131 |
-
"--outdir", "/tmp",
|
132 |
-
input_path
|
133 |
-
], check=True)
|
134 |
-
|
135 |
-
print("Ecriture TXT")
|
136 |
-
with open(output_path, "r", encoding="utf-8") as f:
|
137 |
-
txt_data = [line.strip() for line in f if line.strip()]
|
138 |
-
|
139 |
-
os.remove(input_path)
|
140 |
-
os.remove(output_path)
|
141 |
-
return txt_data
|
142 |
-
|
143 |
-
raise Exception(f"Aucun fichier .doc/.docx trouvé dans le ZIP pour {specification}-{version}")
|
144 |
-
|
145 |
-
def get_scope(specification: str, version: str):
|
146 |
-
try:
|
147 |
-
spec_text = get_text(specification, version)
|
148 |
-
scp_i = 0
|
149 |
-
nxt_i = 0
|
150 |
-
for x in range(len(spec_text)):
|
151 |
-
text = spec_text[x]
|
152 |
-
if re.search(r"scope$", text, flags=re.IGNORECASE):
|
153 |
-
scp_i = x
|
154 |
-
nxt_i = scp_i + 10
|
155 |
-
if re.search(r"references$", text, flags=re.IGNORECASE):
|
156 |
-
nxt_i = x
|
157 |
-
|
158 |
-
return re.sub(r"\s+", " ", " ".join(spec_text[scp_i+1:nxt_i])) if len(spec_text[scp_i+1:nxt_i]) < 2 else "Not found"
|
159 |
-
except Exception as e:
|
160 |
-
traceback.print_exception(e)
|
161 |
-
return "Not found (error)"
|
162 |
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
|
|
|
|
|
|
|
|
|
|
171 |
break
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
172 |
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
chapters.append(line)
|
180 |
-
print(line)
|
181 |
-
|
182 |
-
real_toc_indexes = {}
|
183 |
-
|
184 |
-
for chapter in chapters:
|
185 |
-
x = text.index(chapter)
|
186 |
-
real_toc_indexes[chapter] = x
|
187 |
-
|
188 |
-
document = {}
|
189 |
-
toc = list(real_toc_indexes.keys())
|
190 |
-
index_toc = list(real_toc_indexes.values())
|
191 |
-
curr_index = 0
|
192 |
-
for x in range(1, len(toc)):
|
193 |
-
document[toc[curr_index].replace("\t", " ")] = re.sub(r"[\ \t]+", " ", "\n".join(text[index_toc[curr_index]+1:index_toc[x]]))
|
194 |
-
curr_index = x
|
195 |
-
|
196 |
-
document[toc[curr_index].replace("\t", " ")] = re.sub(r"\s+", " ", " ".join(text[index_toc[curr_index]+1:]))
|
197 |
-
print(len(toc)-1, toc[curr_index], curr_index)
|
198 |
-
return document
|
199 |
-
|
200 |
-
def caseSensitive(string: str, sensitive: bool):
|
201 |
-
return string if sensitive else string.lower()
|
202 |
-
|
203 |
-
class DocRequest(BaseModel):
|
204 |
-
doc_id: str
|
205 |
-
release: Optional[int] = None
|
206 |
-
|
207 |
-
class DocResponse(BaseModel):
|
208 |
-
doc_id: str
|
209 |
-
url: str
|
210 |
-
version: str
|
211 |
-
scope: Optional[str] = None
|
212 |
-
search_time: float
|
213 |
-
|
214 |
-
class BatchDocRequest(BaseModel):
|
215 |
-
doc_ids: List[str]
|
216 |
-
release: Optional[int] = None
|
217 |
-
|
218 |
-
class BatchDocResponse(BaseModel):
|
219 |
-
results: Dict[str, str]
|
220 |
-
missing: List[str]
|
221 |
-
search_time: float
|
222 |
-
|
223 |
-
class KeywordRequest2(BaseModel):
|
224 |
-
keywords: Optional[str] = ""
|
225 |
-
threshold: Optional[int] = 60
|
226 |
-
release: Optional[str] = None
|
227 |
-
working_group: Optional[str] = None
|
228 |
-
spec_type: Optional[Literal["TS", "TR"]] = None
|
229 |
-
|
230 |
-
class KeywordRequest(BaseModel):
|
231 |
-
keywords: Optional[str] = ""
|
232 |
-
search_mode: Literal["quick", "deep"]
|
233 |
-
case_sensitive: Optional[bool] = False
|
234 |
-
release: Optional[str] = None
|
235 |
-
working_group: Optional[str] = None
|
236 |
-
spec_type: Optional[Literal["TS", "TR"]] = None
|
237 |
-
mode: Optional[Literal["and", "or"]] = "and"
|
238 |
-
|
239 |
-
class KeywordResponse(BaseModel):
|
240 |
-
results: List[Dict[str, Any]]
|
241 |
-
search_time: float
|
242 |
-
|
243 |
-
class TsgDocFinder:
|
244 |
-
def __init__(self):
|
245 |
-
self.main_ftp_url = "https://www.3gpp.org/ftp"
|
246 |
-
self.indexer_file = "indexed_docs.json"
|
247 |
-
self.indexer, self.last_indexer_date = self.load_indexer()
|
248 |
-
|
249 |
-
def load_indexer(self):
|
250 |
-
"""Load existing index if available"""
|
251 |
-
if os.path.exists(self.indexer_file):
|
252 |
-
with open(self.indexer_file, "r", encoding="utf-8") as f:
|
253 |
-
x = json.load(f)
|
254 |
-
return x["docs"], x["last_indexed_date"]
|
255 |
-
return {}, None
|
256 |
-
|
257 |
-
def save_indexer(self):
|
258 |
-
"""Save the updated index"""
|
259 |
-
self.last_indexer_date = today.strftime("%d/%m/%Y-%H:%M:%S")
|
260 |
-
with open(self.indexer_file, "w", encoding="utf-8") as f:
|
261 |
-
today = datetime.today()
|
262 |
-
output = {"docs": self.indexer, "last_indexed_date": self.last_indexer_date}
|
263 |
-
json.dump(output, f, indent=4, ensure_ascii=False)
|
264 |
-
|
265 |
-
def get_workgroup(self, doc):
|
266 |
-
main_tsg = "tsg_ct" if doc[0] == "C" else "tsg_sa" if doc[0] == "S" else "tsg_ran" if doc[0] == "R" else None
|
267 |
-
if main_tsg is None:
|
268 |
-
return None, None, None
|
269 |
-
workgroup = f"WG{int(doc[1])}" if doc[1].isnumeric() else main_tsg.upper()
|
270 |
-
return main_tsg, workgroup, doc
|
271 |
-
|
272 |
-
def find_workgroup_url(self, main_tsg, workgroup):
|
273 |
-
"""Find the URL for the specific workgroup"""
|
274 |
-
response = requests.get(f"{self.main_ftp_url}/{main_tsg}", verify=False)
|
275 |
-
soup = BeautifulSoup(response.text, 'html.parser')
|
276 |
-
|
277 |
-
for item in soup.find_all("tr"):
|
278 |
-
link = item.find("a")
|
279 |
-
if link and workgroup in link.get_text():
|
280 |
-
return f"{self.main_ftp_url}/{main_tsg}/{link.get_text()}"
|
281 |
-
|
282 |
-
return f"{self.main_ftp_url}/{main_tsg}/{workgroup}"
|
283 |
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
except Exception as e:
|
291 |
-
print(f"Error accessing {url}: {e}")
|
292 |
-
return []
|
293 |
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
for doc in self.indexer:
|
300 |
-
if doc.startswith(original_id):
|
301 |
-
return self.indexer[doc]
|
302 |
-
|
303 |
-
# 2. Recherche live "classique" (TSG/CT)
|
304 |
-
main_tsg, workgroup, doc = self.get_workgroup(doc_id)
|
305 |
-
if main_tsg:
|
306 |
-
wg_url = self.find_workgroup_url(main_tsg, workgroup)
|
307 |
-
if wg_url:
|
308 |
-
meeting_folders = self.get_docs_from_url(wg_url)
|
309 |
-
for folder in meeting_folders:
|
310 |
-
meeting_url = f"{wg_url}/{folder}"
|
311 |
-
meeting_contents = self.get_docs_from_url(meeting_url)
|
312 |
-
key = "docs" if "docs" in [x.lower() for x in meeting_contents] else "tdocs" if "tdocs" in [x.lower() for x in meeting_contents] else "tdoc" if "tdoc" in [x.lower() for x in meeting_contents] else None
|
313 |
-
if key is not None:
|
314 |
-
docs_url = f"{meeting_url}/{key}"
|
315 |
-
files = self.get_docs_from_url(docs_url)
|
316 |
-
for file in files:
|
317 |
-
if doc in file.lower() or original_id in file:
|
318 |
-
doc_url = f"{docs_url}/{file}"
|
319 |
-
self.indexer[original_id] = doc_url
|
320 |
-
return doc_url
|
321 |
-
# ZIP subfolder
|
322 |
-
if "zip" in [x for x in files]:
|
323 |
-
zip_url = f"{docs_url}/zip"
|
324 |
-
zip_files = self.get_docs_from_url(zip_url)
|
325 |
-
for file in zip_files:
|
326 |
-
if doc in file.lower() or original_id in file:
|
327 |
-
doc_url = f"{zip_url}/{file}"
|
328 |
-
self.indexer[original_id] = doc_url
|
329 |
-
self.save_indexer()
|
330 |
-
return doc_url
|
331 |
-
|
332 |
-
# 3. Dernier recours : tenter dans /ftp/workshop (recherche live)
|
333 |
-
workshop_url = f"{self.main_ftp_url}/workshop"
|
334 |
-
meetings = self.get_docs_from_url(workshop_url)
|
335 |
-
for meeting in meetings:
|
336 |
-
if meeting in ['./', '../']:
|
337 |
-
continue
|
338 |
-
meeting_url = f"{workshop_url}/{meeting}"
|
339 |
-
contents = self.get_docs_from_url(meeting_url)
|
340 |
-
for sub in contents:
|
341 |
-
if sub.lower() in ['docs', 'tdocs']:
|
342 |
-
docs_url = f"{meeting_url}/{sub}"
|
343 |
-
files = self.get_docs_from_url(docs_url)
|
344 |
-
for file in files:
|
345 |
-
if doc_id.lower() in file.lower() or original_id in file:
|
346 |
-
doc_url = f"{docs_url}/{file}"
|
347 |
-
self.indexer[original_id] = doc_url
|
348 |
-
self.save_indexer()
|
349 |
-
return doc_url
|
350 |
-
if "zip" in [x.lower() for x in files]:
|
351 |
-
zip_url = f"{docs_url}/zip"
|
352 |
-
zip_files = self.get_docs_from_url(zip_url)
|
353 |
-
for file in zip_files:
|
354 |
-
if doc_id.lower() in file.lower() or original_id in file:
|
355 |
-
doc_url = f"{zip_url}/{file}"
|
356 |
-
self.indexer[original_id] = doc_url
|
357 |
-
self.save_indexer()
|
358 |
-
return doc_url
|
359 |
|
360 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
361 |
|
362 |
-
|
|
|
363 |
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
self.indexer_specs, self.indexer_scopes, self.last_indexer_date = self.load_indexer()
|
370 |
-
self.indexer_documents = self.load_documents()
|
371 |
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
x = json.load(f)
|
377 |
-
return x["specs"], x["scopes"], x["last_indexed_date"]
|
378 |
-
return {}, {}, None
|
379 |
-
|
380 |
-
def load_documents(self):
|
381 |
-
if os.path.exists(self.doc_zip):
|
382 |
-
with zipfile.ZipFile(open(self.doc_zip, "rb")) as zf:
|
383 |
-
for file_name in zf.namelist():
|
384 |
-
if file_name.endswith(".json"):
|
385 |
-
doc_bytes = zf.read(file_name)
|
386 |
-
try:
|
387 |
-
doc_data = json.loads(doc_bytes.decode("utf-8"))
|
388 |
-
print("Documents loaded successfully !")
|
389 |
-
return doc_data
|
390 |
-
except json.JSONDecodeError as e:
|
391 |
-
print(f"Error while decoding the JSON file {file_name}: {e}")
|
392 |
-
print("Failed !")
|
393 |
-
return {}
|
394 |
-
|
395 |
-
def get_document(self, spec, version):
|
396 |
-
doc = self.indexer_documents.get(spec)
|
397 |
-
if doc:
|
398 |
-
return doc
|
399 |
-
else:
|
400 |
-
return get_spec_content(spec, version)
|
401 |
|
402 |
-
|
403 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
404 |
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
|
413 |
-
def get_docs_from_url(self, url):
|
414 |
-
"""Get list of documents/directories from a URL"""
|
415 |
-
try:
|
416 |
-
response = requests.get(url, verify=False, timeout=10)
|
417 |
-
soup = BeautifulSoup(response.text, "html.parser")
|
418 |
-
return [item.get_text() for item in soup.select("tr td a")]
|
419 |
-
except Exception as e:
|
420 |
-
print(f"Error accessing {url}: {e}")
|
421 |
-
return []
|
422 |
-
|
423 |
-
def search_document(self, document, release):
|
424 |
-
series = document.split(".")[0].zfill(2)
|
425 |
-
url = f"https://www.3gpp.org/ftp/Specs/archive/{series}_series/{document}"
|
426 |
-
versions = self.get_docs_from_url(url)
|
427 |
-
return url + "/" + versions[-1] if versions != [] else f"Specification {document} not found"
|
428 |
-
|
429 |
-
finder_tsg = TsgDocFinder()
|
430 |
-
finder_spec = SpecDocFinder()
|
431 |
-
lemmatizer = WordNetLemmatizer()
|
432 |
-
model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2", backend="onnx")
|
433 |
-
|
434 |
-
if os.path.exists("bm25s.zip"):
|
435 |
-
with zipfile.ZipFile("bm25s.zip", 'r') as zip_ref:
|
436 |
-
zip_ref.extractall(".")
|
437 |
-
bm25_engine = bm25s.BM25.load("3gpp_bm25_docs", load_corpus=True)
|
438 |
-
|
439 |
-
@app.get("/")
|
440 |
-
async def main_menu():
|
441 |
-
return FileResponse(os.path.join("templates", "index.html"))
|
442 |
-
|
443 |
@app.post("/search-spec/experimental", response_model=KeywordResponse)
|
444 |
-
def
|
445 |
start_time = time.time()
|
446 |
-
release = request.release
|
447 |
working_group = request.working_group
|
448 |
spec_type = request.spec_type
|
449 |
threshold = request.threshold
|
450 |
-
query =
|
451 |
|
452 |
results_out = []
|
453 |
query_tokens = bm25s.tokenize(query)
|
454 |
-
results, scores =
|
|
|
455 |
|
456 |
def calculate_boosted_score(metadata, score, query):
|
457 |
-
title =
|
458 |
-
q =
|
459 |
-
spec_id_presence = 0.5 if
|
460 |
booster = len(q & title) * 0.5
|
461 |
return score + spec_id_presence + booster
|
462 |
|
@@ -500,12 +247,10 @@ def search_spec_bm25(request: KeywordRequest2):
|
|
500 |
spec_details[spec]["normalized_score"] = normalized_scores[spec]
|
501 |
|
502 |
unique_specs = sorted(normalized_scores.keys(), key=lambda x: normalized_scores[x], reverse=True)
|
503 |
-
|
504 |
for rank, spec in enumerate(unique_specs, 1):
|
505 |
details = spec_details[spec]
|
506 |
metadata = details['doc']['metadata']
|
507 |
-
if metadata.get('version', None) is None or (release is not None and metadata["version"].split(".")[0] != str(release)):
|
508 |
-
continue
|
509 |
if metadata.get('type', None) is None or (spec_type is not None and metadata["type"] != spec_type):
|
510 |
continue
|
511 |
if metadata.get('working_group', None) is None or (working_group is not None and metadata["working_group"] != working_group):
|
@@ -520,120 +265,4 @@ def search_spec_bm25(request: KeywordRequest2):
|
|
520 |
search_time=time.time() - start_time
|
521 |
)
|
522 |
else:
|
523 |
-
raise HTTPException(status_code=404, detail="Specifications not found")
|
524 |
-
|
525 |
-
@app.post("/search-spec", response_model=KeywordResponse)
|
526 |
-
def search_spec(request: KeywordRequest):
|
527 |
-
start_time = time.time()
|
528 |
-
booleanLowered = request.case_sensitive
|
529 |
-
search_mode = request.search_mode
|
530 |
-
release = request.release
|
531 |
-
working_group = request.working_group
|
532 |
-
spec_type = request.spec_type
|
533 |
-
kws = [caseSensitive(_, booleanLowered) for _ in request.keywords.split(",")]
|
534 |
-
print(kws)
|
535 |
-
unique_specs = set()
|
536 |
-
results = []
|
537 |
-
|
538 |
-
if kws == [""] and search_mode == "deep":
|
539 |
-
raise HTTPException(status_code=400, detail="You must enter keywords in deep search mode !")
|
540 |
-
|
541 |
-
for string, spec in finder_spec.indexer_specs.items():
|
542 |
-
put = False
|
543 |
-
if spec['id'] in unique_specs:
|
544 |
-
continue
|
545 |
-
if spec.get('version', None) is None or (release is not None and spec["version"].split(".")[0] != str(release)):
|
546 |
-
continue
|
547 |
-
if spec.get('type', None) is None or (spec_type is not None and spec["type"] != spec_type):
|
548 |
-
continue
|
549 |
-
if spec.get('working_group', None) is None or (working_group is not None and spec["working_group"] != working_group):
|
550 |
-
continue
|
551 |
-
|
552 |
-
if kws != "":
|
553 |
-
if search_mode == "deep":
|
554 |
-
contents = []
|
555 |
-
version = finder_spec.search_document(spec['id'], spec['release']).split("/")[-1].replace(".zip", "").split("-")[-1]
|
556 |
-
doc = finder_spec.get_document(spec['id'], version)
|
557 |
-
docValid = not isinstance(doc, str)
|
558 |
-
|
559 |
-
if request.mode == "and":
|
560 |
-
if all(kw in caseSensitive(string, booleanLowered) for kw in kws):
|
561 |
-
put = True
|
562 |
-
if search_mode == "deep":
|
563 |
-
if docValid:
|
564 |
-
for chapter in list(doc.keys())[1:]:
|
565 |
-
if "references" not in chapter.lower() and "void" not in chapter.lower() and "annex" not in doc[chapter].lower():
|
566 |
-
if all(kw in caseSensitive(doc[chapter], booleanLowered) for kw in kws):
|
567 |
-
put = True
|
568 |
-
contents.append(chapter)
|
569 |
-
elif request.mode == "or":
|
570 |
-
if any(kw in caseSensitive(string, booleanLowered) for kw in kws):
|
571 |
-
put = True
|
572 |
-
if search_mode == "deep":
|
573 |
-
if docValid:
|
574 |
-
for chapter in list(doc.keys())[1:]:
|
575 |
-
if "references" not in chapter.lower() and "void" not in chapter.lower() and "annex" not in doc[chapter].lower():
|
576 |
-
if any(kw in caseSensitive(doc[chapter], booleanLowered) for kw in kws):
|
577 |
-
put = True
|
578 |
-
contents.append(chapter)
|
579 |
-
else:
|
580 |
-
put = True
|
581 |
-
|
582 |
-
if put:
|
583 |
-
spec_content = spec
|
584 |
-
if search_mode == "deep":
|
585 |
-
spec_content["contains"] = {chap: doc[chap] for chap in contents}
|
586 |
-
results.append(spec_content)
|
587 |
-
else:
|
588 |
-
unique_specs.add(spec['id'])
|
589 |
-
if len(results) > 0:
|
590 |
-
return KeywordResponse(
|
591 |
-
results=results,
|
592 |
-
search_time=time.time() - start_time
|
593 |
-
)
|
594 |
-
else:
|
595 |
-
raise HTTPException(status_code=404, detail="Specifications not found")
|
596 |
-
|
597 |
-
@app.post("/find", response_model=DocResponse)
|
598 |
-
def find_document(request: DocRequest):
|
599 |
-
start_time = time.time()
|
600 |
-
finder = finder_tsg if request.doc_id[0].isalpha() else finder_spec
|
601 |
-
result = finder.search_document(request.doc_id, request.release)
|
602 |
-
|
603 |
-
if "not found" not in result and "Could not" not in result and "Unable" not in result:
|
604 |
-
version = result.split("/")[-1].replace(".zip", "").split("-")[-1]
|
605 |
-
return DocResponse(
|
606 |
-
doc_id=request.doc_id,
|
607 |
-
version=version,
|
608 |
-
url=result,
|
609 |
-
search_time=time.time() - start_time
|
610 |
-
) if isinstance(finder, TsgDocFinder) else DocResponse(
|
611 |
-
doc_id=request.doc_id,
|
612 |
-
version=version,
|
613 |
-
url=result,
|
614 |
-
search_time=time.time() - start_time,
|
615 |
-
scope=finder.indexer_scopes[request.doc_id] if request.doc_id in finder.indexer_scopes else get_scope(request.doc_id, version)
|
616 |
-
)
|
617 |
-
else:
|
618 |
-
raise HTTPException(status_code=404, detail=result)
|
619 |
-
|
620 |
-
@app.post("/batch", response_model=BatchDocResponse)
|
621 |
-
def find_documents_batch(request: BatchDocRequest):
|
622 |
-
start_time = time.time()
|
623 |
-
|
624 |
-
results = {}
|
625 |
-
missing = []
|
626 |
-
|
627 |
-
for doc_id in request.doc_ids:
|
628 |
-
finder = finder_tsg if doc_id[0].isalpha() else finder_spec
|
629 |
-
result = finder.search_document(doc_id)
|
630 |
-
if "not found" not in result and "Could not" not in result and "Unable" not in result:
|
631 |
-
results[doc_id] = result
|
632 |
-
else:
|
633 |
-
missing.append(doc_id)
|
634 |
-
|
635 |
-
return BatchDocResponse(
|
636 |
-
results=results,
|
637 |
-
missing=missing,
|
638 |
-
search_time=time.time() - start_time
|
639 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import time
|
2 |
from datetime import datetime
|
3 |
+
import os, warnings, nltk, json, subprocess
|
4 |
+
import numpy as np
|
5 |
+
from nltk.stem import WordNetLemmatizer
|
6 |
from dotenv import load_dotenv
|
7 |
+
from sklearn.preprocessing import MinMaxScaler
|
8 |
+
|
9 |
+
os.environ['CURL_CA_BUNDLE'] = ""
|
10 |
+
warnings.filterwarnings('ignore')
|
11 |
+
nltk.download('wordnet')
|
12 |
+
load_dotenv()
|
13 |
+
|
14 |
+
from datasets import load_dataset
|
15 |
+
import bm25s
|
16 |
+
from bm25s.hf import BM25HF
|
17 |
+
|
18 |
from fastapi import FastAPI, HTTPException
|
19 |
from fastapi.middleware.cors import CORSMiddleware
|
|
|
|
|
20 |
from fastapi.responses import FileResponse
|
21 |
from fastapi.staticfiles import StaticFiles
|
22 |
+
from schemas import *
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
from bs4 import BeautifulSoup
|
25 |
+
import requests
|
26 |
|
27 |
+
lemmatizer = WordNetLemmatizer()
|
|
|
28 |
|
29 |
+
spec_metadatas = load_dataset("OrganizedProgrammers/3GPPSpecMetadata", token=os.environ["HF_TOKEN"])
|
30 |
+
spec_contents = load_dataset("OrganizedProgrammers/3GPPSpecContent", token=os.environ["HF_TOKEN"])
|
31 |
+
tdoc_locations = load_dataset("OrganizedProgrammers/3GPPTDocLocation", token=os.environ["HF_TOKEN"])
|
32 |
+
bm25_index = BM25HF.load_from_hub("OrganizedProgrammers/3GPPBM25IndexSingle", load_corpus=True, token=os.environ["HF_TOKEN"])
|
33 |
|
34 |
+
spec_metadatas = spec_metadatas["train"].to_list()
|
35 |
+
spec_contents = spec_contents["train"].to_list()
|
36 |
+
tdoc_locations = tdoc_locations["train"].to_list()
|
37 |
|
38 |
+
def get_docs_from_url(url):
|
39 |
+
"""Get list of documents/directories from a URL"""
|
40 |
+
try:
|
41 |
+
response = requests.get(url, verify=False, timeout=10)
|
42 |
+
soup = BeautifulSoup(response.text, "html.parser")
|
43 |
+
return [item.get_text() for item in soup.select("tr td a")]
|
44 |
+
except Exception as e:
|
45 |
+
print(f"Error accessing {url}: {e}")
|
46 |
+
return []
|
47 |
|
48 |
+
def get_tdoc_url(doc_id):
|
49 |
+
for tdoc in tdoc_locations:
|
50 |
+
if tdoc["doc_id"] == doc_id:
|
51 |
+
return tdoc["url"]
|
52 |
+
|
53 |
+
def get_spec_url(document):
|
54 |
+
series = document.split(".")[0].zfill(2)
|
55 |
+
url = f"https://www.3gpp.org/ftp/Specs/archive/{series}_series/{document}"
|
56 |
+
versions = get_docs_from_url(url)
|
57 |
+
return url + "/" + versions[-1] if versions != [] else f"Specification {document} not found"
|
58 |
+
|
59 |
+
def get_document(spec_id: str, spec_title: str):
|
60 |
+
text = [f"{spec_id} - {spec_title}"]
|
61 |
+
for section in spec_contents:
|
62 |
+
if spec_id == section["doc_id"]:
|
63 |
+
text.extend([section['section'], section['content']])
|
64 |
+
return text
|
65 |
+
|
66 |
+
app = FastAPI(title="3GPP Document Finder Back-End", description="Backend for 3GPPDocFinder - Searching technical documents & specifications from 3GPP FTP server")
|
67 |
+
app.mount("/static", StaticFiles(directory="static"), name="static")
|
68 |
app.add_middleware(
|
69 |
CORSMiddleware,
|
70 |
+
allow_origins=["*"],
|
71 |
allow_credentials=True,
|
72 |
allow_methods=["*"],
|
73 |
allow_headers=["*"],
|
74 |
)
|
75 |
|
76 |
+
@app.get("/")
|
77 |
+
def index():
|
78 |
+
return FileResponse(os.path.join('templates', 'index.html'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
79 |
|
80 |
+
@app.post("/find", response_model=DocResponse)
|
81 |
+
def find_document(request: DocRequest):
|
82 |
+
start_time = time.time()
|
83 |
+
document = request.doc_id
|
84 |
+
url = get_tdoc_url(document) if document[0].isalpha() else get_spec_url(document)
|
85 |
+
if "Specification" in url or "Document" in url:
|
86 |
+
raise HTTPException(status_code=404, detail=url)
|
87 |
+
|
88 |
+
version = url.split("/")[-1].replace(".zip", "").split("-")[-1]
|
89 |
+
scope = None
|
90 |
+
for spec in spec_metadatas:
|
91 |
+
if spec['id'] == document:
|
92 |
+
scope = spec['id']
|
93 |
break
|
94 |
+
return DocResponse(
|
95 |
+
doc_id=document,
|
96 |
+
version=version,
|
97 |
+
url=url,
|
98 |
+
search_time=time.time() - start_time,
|
99 |
+
scope=scope
|
100 |
+
)
|
101 |
|
102 |
+
@app.post("/batch", response_model=BatchDocResponse)
|
103 |
+
def find_multiple_documents(request: BatchDocRequest):
|
104 |
+
start_time = time.time()
|
105 |
+
documents = request.doc_ids
|
106 |
+
results = {}
|
107 |
+
missing = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
|
109 |
+
for document in documents:
|
110 |
+
url = get_tdoc_url(document) if document[0].isalpha() else get_spec_url(document)
|
111 |
+
if "Specification" not in url and "Document" not in url:
|
112 |
+
results[document] = url
|
113 |
+
else:
|
114 |
+
missing.append(document)
|
|
|
|
|
|
|
115 |
|
116 |
+
return BatchDocResponse(
|
117 |
+
results=results,
|
118 |
+
missing=missing,
|
119 |
+
search_time=time.time()-start_time
|
120 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
121 |
|
122 |
+
@app.post("/search-spec", response_model=KeywordResponse)
|
123 |
+
def search_specification_by_keywords(request: KeywordRequest):
|
124 |
+
start_time = time.time()
|
125 |
+
boolSensitiveCase = request.case_sensitive
|
126 |
+
search_mode = request.search_mode
|
127 |
+
working_group = request.working_group
|
128 |
+
spec_type = request.spec_type
|
129 |
+
keywords = [string.lower() if boolSensitiveCase else string for string in request.keywords.split(",")]
|
130 |
+
print(keywords)
|
131 |
+
unique_specs = set()
|
132 |
+
results = []
|
133 |
|
134 |
+
if keywords == [""] and search_mode == "deep":
|
135 |
+
raise HTTPException(status_code=400, detail="You must enter keywords in deep search mode !")
|
136 |
|
137 |
+
for spec in spec_metadatas:
|
138 |
+
valid = False
|
139 |
+
if spec['id'] in unique_specs: continue
|
140 |
+
if spec.get('type', None) is None or (spec_type is not None and spec["type"] != spec_type): continue
|
141 |
+
if spec.get('working_group', None) is None or (working_group is not None and spec["working_group"] != working_group): continue
|
|
|
|
|
142 |
|
143 |
+
if search_mode == "deep":
|
144 |
+
contents = []
|
145 |
+
doc = get_document(spec["id"], spec["title"])
|
146 |
+
docValid = len(doc) > 1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
+
if request.mode == "and":
|
149 |
+
string = f"{spec['id']}+-+{spec['title']}+-+{spec['type']}+-+{spec['version']}+-+{spec['working_group']}"
|
150 |
+
if all(keyword in (string.lower() if boolSensitiveCase else string) for keyword in keywords):
|
151 |
+
valid = True
|
152 |
+
if search_mode == "deep":
|
153 |
+
if docValid:
|
154 |
+
for x in range(1, len(doc) - 1, 2):
|
155 |
+
section_title = doc[x]
|
156 |
+
section_content = doc[x+1]
|
157 |
+
if "reference" not in section_title.lower() and "void" not in section_title.lower() and "annex" not in section_content.lower():
|
158 |
+
if all(keyword in (section_content.lower() if boolSensitiveCase else section_content) for keyword in keywords):
|
159 |
+
valid = True
|
160 |
+
contents.append({section_title: section_content})
|
161 |
+
elif request.mode == "or":
|
162 |
+
string = f"{spec['id']}+-+{spec['title']}+-+{spec['type']}+-+{spec['version']}+-+{spec['working_group']}"
|
163 |
+
if any(keyword in (string.lower() if boolSensitiveCase else string) for keyword in keywords):
|
164 |
+
valid = True
|
165 |
+
if search_mode == "deep":
|
166 |
+
if docValid:
|
167 |
+
for x in range(1, len(doc) - 1, 2):
|
168 |
+
section_title = doc[x]
|
169 |
+
section_content = doc[x+1]
|
170 |
+
if "reference" not in section_title.lower() and "void" not in section_title.lower() and "annex" not in section_content.lower():
|
171 |
+
if any(keyword in (section_content.lower() if boolSensitiveCase else section_content) for keyword in keywords):
|
172 |
+
valid = True
|
173 |
+
contents.append({section_title: section_content})
|
174 |
+
if valid:
|
175 |
+
spec_content = spec
|
176 |
+
if search_mode == "deep":
|
177 |
+
spec_content["contains"] = {k: v for d in contents for k, v in d.items()}
|
178 |
+
results.append(spec_content)
|
179 |
+
else:
|
180 |
+
unique_specs.add(spec['id'])
|
181 |
|
182 |
+
if len(results) > 0:
|
183 |
+
return KeywordResponse(
|
184 |
+
results=results,
|
185 |
+
search_time=time.time() - start_time
|
186 |
+
)
|
187 |
+
else:
|
188 |
+
raise HTTPException(status_code=404, detail="Specifications not found")
|
189 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
190 |
@app.post("/search-spec/experimental", response_model=KeywordResponse)
|
191 |
+
def bm25_search_specification(request: BM25KeywordRequest):
|
192 |
start_time = time.time()
|
|
|
193 |
working_group = request.working_group
|
194 |
spec_type = request.spec_type
|
195 |
threshold = request.threshold
|
196 |
+
query = request.keywords
|
197 |
|
198 |
results_out = []
|
199 |
query_tokens = bm25s.tokenize(query)
|
200 |
+
results, scores = bm25_index.retrieve(query_tokens, k=len(bm25_index.corpus))
|
201 |
+
print("BM25 raw scores:", scores)
|
202 |
|
203 |
def calculate_boosted_score(metadata, score, query):
|
204 |
+
title = set(metadata['title'].lower().split())
|
205 |
+
q = set(query.lower().split())
|
206 |
+
spec_id_presence = 0.5 if metadata['id'].lower() in q else 0
|
207 |
booster = len(q & title) * 0.5
|
208 |
return score + spec_id_presence + booster
|
209 |
|
|
|
247 |
spec_details[spec]["normalized_score"] = normalized_scores[spec]
|
248 |
|
249 |
unique_specs = sorted(normalized_scores.keys(), key=lambda x: normalized_scores[x], reverse=True)
|
250 |
+
|
251 |
for rank, spec in enumerate(unique_specs, 1):
|
252 |
details = spec_details[spec]
|
253 |
metadata = details['doc']['metadata']
|
|
|
|
|
254 |
if metadata.get('type', None) is None or (spec_type is not None and metadata["type"] != spec_type):
|
255 |
continue
|
256 |
if metadata.get('working_group', None) is None or (working_group is not None and metadata["working_group"] != working_group):
|
|
|
265 |
search_time=time.time() - start_time
|
266 |
)
|
267 |
else:
|
268 |
+
raise HTTPException(status_code=404, detail="Specifications not found")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
indexed_docs.json
DELETED
@@ -1,8 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"S4-110084": "https://www.3gpp.org/ftp/tsg_sa/WG4_CODEC/TSGS4_62/Docs/S4-110084.zip",
|
3 |
-
"SP-000182": "https://www.3gpp.org/ftp/tsg_sa/TSG_SA/TSGS_08/Docs/ZIP/SP-000182.zip",
|
4 |
-
"SP-000183": "https://www.3gpp.org/ftp/tsg_sa/TSG_SA/TSGS_08/Docs/ZIP/SP-000183.zip",
|
5 |
-
"SP-000184": "https://www.3gpp.org/ftp/tsg_sa/TSG_SA/TSGS_08/Docs/ZIP/SP-000184.zip",
|
6 |
-
"SP-000185": "https://www.3gpp.org/ftp/tsg_sa/TSG_SA/TSGS_08/Docs/ZIP/SP-000185.zip",
|
7 |
-
"SP-090017": "https://www.3gpp.org/ftp/tsg_sa/TSG_SA/TSGS_43/Docs/SP-090017.zip"
|
8 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,21 +1,12 @@
|
|
1 |
-
fastapi
|
2 |
-
uvicorn[standard]
|
3 |
-
requests
|
4 |
-
beautifulsoup4
|
5 |
-
pydantic
|
6 |
-
psycopg2-binary
|
7 |
numpy
|
8 |
-
pandas
|
9 |
-
pymupdf
|
10 |
python-dotenv
|
11 |
-
|
12 |
nltk
|
13 |
bm25s[full]
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
openai
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
numpy
|
|
|
|
|
2 |
python-dotenv
|
3 |
+
scikit-learn
|
4 |
nltk
|
5 |
bm25s[full]
|
6 |
+
jax[cpu]
|
7 |
+
datasets
|
8 |
+
fastapi
|
9 |
+
uvicorn[standard]
|
10 |
+
beautifulsoup4
|
11 |
+
requests
|
12 |
+
pydantic
|
|
schemas.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pydantic import BaseModel
|
2 |
+
from typing import *
|
3 |
+
|
4 |
+
class DocRequest(BaseModel):
|
5 |
+
doc_id: str
|
6 |
+
|
7 |
+
class DocResponse(BaseModel):
|
8 |
+
doc_id: str
|
9 |
+
url: str
|
10 |
+
version: str
|
11 |
+
scope: Optional[str] = None
|
12 |
+
search_time: float
|
13 |
+
|
14 |
+
class BatchDocRequest(BaseModel):
|
15 |
+
doc_ids: List[str]
|
16 |
+
|
17 |
+
class BatchDocResponse(BaseModel):
|
18 |
+
results: Dict[str, str]
|
19 |
+
missing: List[str]
|
20 |
+
search_time: float
|
21 |
+
|
22 |
+
class BM25KeywordRequest(BaseModel):
|
23 |
+
keywords: Optional[str] = ""
|
24 |
+
threshold: Optional[int] = 60
|
25 |
+
release: Optional[str] = None
|
26 |
+
working_group: Optional[str] = None
|
27 |
+
spec_type: Optional[Literal["TS", "TR"]] = None
|
28 |
+
|
29 |
+
class KeywordRequest(BaseModel):
|
30 |
+
keywords: Optional[str] = ""
|
31 |
+
search_mode: Literal["quick", "deep"]
|
32 |
+
case_sensitive: Optional[bool] = False
|
33 |
+
release: Optional[str] = None
|
34 |
+
working_group: Optional[str] = None
|
35 |
+
spec_type: Optional[Literal["TS", "TR"]] = None
|
36 |
+
mode: Optional[Literal["and", "or"]] = "and"
|
37 |
+
|
38 |
+
class KeywordResponse(BaseModel):
|
39 |
+
results: List[Dict[str, Any]]
|
40 |
+
search_time: float
|
static/script.js
CHANGED
@@ -354,7 +354,6 @@ function displayKeywordResults(data, mode) {
|
|
354 |
<div class="result-url">
|
355 |
<p>Title: ${spec.title}</p>
|
356 |
<p>Type: ${spec.type}</p>
|
357 |
-
<p>Release: ${spec.release}</p>
|
358 |
<p>Version: ${spec.version}</p>
|
359 |
<p>WG: ${spec.working_group}</p>
|
360 |
<p>URL: <a target="_blank" href="${spec.url}">${spec.url}</a></p>
|
@@ -430,30 +429,6 @@ function openSectionPopup(specId, sections) {
|
|
430 |
newTab.document.open();
|
431 |
newTab.document.write(htmlContent);
|
432 |
newTab.document.close()
|
433 |
-
// popupTitle.textContent = `Sections of specification ${specId}`;
|
434 |
-
|
435 |
-
// popupTextareas.innerHTML = '';
|
436 |
-
// Object.entries(sections).forEach(([section, content], index) => {
|
437 |
-
// const container = document.createElement("div");
|
438 |
-
// container.className = "textarea-container";
|
439 |
-
|
440 |
-
// const textarea = document.createElement("textarea");
|
441 |
-
// textarea.id = `section-${index}`;
|
442 |
-
// textarea.value = `${section}\n\n${content}`
|
443 |
-
// textarea.readOnly = true;
|
444 |
-
|
445 |
-
// const copyBtn = document.createElement('button');
|
446 |
-
// copyBtn.className = 'copy-btn';
|
447 |
-
// copyBtn.textContent = 'Copy';
|
448 |
-
// copyBtn.onclick = () => copyTextarea(`section-${index}`);
|
449 |
-
|
450 |
-
// container.appendChild(textarea);
|
451 |
-
// container.appendChild(copyBtn);
|
452 |
-
// popupTextareas.appendChild(container);
|
453 |
-
// });
|
454 |
-
|
455 |
-
// sectionPopup.style.display = 'block';
|
456 |
-
// document.body.style.overflow = 'hidden';
|
457 |
}
|
458 |
|
459 |
// Display batch results
|
@@ -534,6 +509,6 @@ keywordInput.addEventListener('keypress', (event)=>{
|
|
534 |
|
535 |
expKeywordInput.addEventListener('keypress', (event)=>{
|
536 |
if (event.key === "Enter"){
|
537 |
-
|
538 |
}
|
539 |
})
|
|
|
354 |
<div class="result-url">
|
355 |
<p>Title: ${spec.title}</p>
|
356 |
<p>Type: ${spec.type}</p>
|
|
|
357 |
<p>Version: ${spec.version}</p>
|
358 |
<p>WG: ${spec.working_group}</p>
|
359 |
<p>URL: <a target="_blank" href="${spec.url}">${spec.url}</a></p>
|
|
|
429 |
newTab.document.open();
|
430 |
newTab.document.write(htmlContent);
|
431 |
newTab.document.close()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
432 |
}
|
433 |
|
434 |
// Display batch results
|
|
|
509 |
|
510 |
expKeywordInput.addEventListener('keypress', (event)=>{
|
511 |
if (event.key === "Enter"){
|
512 |
+
expKeywordSearchBtn.click();
|
513 |
}
|
514 |
})
|