File size: 10,857 Bytes
5c50991
36dacc6
970f416
dd0d47d
221e4b6
 
ca97f63
221e4b6
970f416
45c2159
34cd1e5
69c8775
 
9069c3e
221e4b6
5c50991
 
 
 
 
 
 
 
5a94240
 
5c50991
 
 
 
 
 
5a94240
5c50991
 
 
 
 
 
 
5a94240
5c50991
 
 
 
 
 
 
 
 
 
2881733
22b94a2
5c50991
 
 
957ece1
08f659b
957ece1
 
 
 
5c50991
 
221e4b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22b94a2
 
 
 
957ece1
2881733
 
 
 
1aba000
2881733
fbaf2b0
 
2881733
22b94a2
2881733
5c50991
 
 
 
 
 
 
 
34cd1e5
2881733
34cd1e5
 
2881733
 
9069c3e
 
 
34cd1e5
 
a459bee
 
 
 
34cd1e5
5fc1115
34cd1e5
 
5fc1115
34cd1e5
 
 
 
 
 
5fc1115
cc08312
34cd1e5
 
 
 
45c2159
 
 
 
 
 
 
 
34cd1e5
 
 
5462ff3
2881733
5462ff3
 
34cd1e5
5462ff3
b56b6ec
22b94a2
 
b56b6ec
34cd1e5
69c8775
 
 
 
 
 
 
 
 
 
 
 
34cd1e5
 
 
 
 
 
 
238a95a
 
34cd1e5
 
238a95a
34cd1e5
5c50991
 
 
 
fa03d73
65efb90
aa69ba7
5c50991
 
 
34cd1e5
5c50991
 
 
 
2881733
aa69ba7
5c50991
22b94a2
e1ad065
22b94a2
2881733
 
e1ad065
 
22b94a2
e1ad065
 
2881733
22b94a2
 
2881733
 
 
22b94a2
 
2881733
 
 
22b94a2
 
2881733
 
22b94a2
 
 
 
 
 
 
e1ad065
2881733
 
01262c3
65efb90
2881733
 
 
5c50991
 
 
2881733
34cd1e5
5462ff3
292fb3c
221e4b6
970f416
65b3c3a
5c50991
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import time
import logging
import gradio as gr
import cv2
import os
from pathlib import Path
from huggingface_hub import hf_hub_download
from llama_cpp import Llama
from llama_cpp.llama_chat_format import Llava15ChatHandler
import base64
import gc
import io
from contextlib import redirect_stdout, redirect_stderr
import sys, llama_cpp

# ----------------------------------------
# Model configurations: per-size prefixes and repos
MODELS = {
    "256M": {
        "model_repo": "mradermacher/SmolVLM2-256M-Video-Instruct-GGUF",
        "clip_repo":  "ggml-org/SmolVLM2-256M-Video-Instruct-GGUF",
        "model_prefix": "SmolVLM2-256M-Video-Instruct",
        "clip_prefix":  "mmproj-SmolVLM2-256M-Video-Instruct",
        "model_variants": ["f16", "Q8_0", "Q2_K", "Q4_K_M"],
        "clip_variants":  ["Q8_0", "f16"],
    },
    "500M": {
        "model_repo": "mradermacher/SmolVLM2-500M-Video-Instruct-GGUF",
        "clip_repo":  "ggml-org/SmolVLM2-500M-Video-Instruct-GGUF",
        "model_prefix": "SmolVLM2-500M-Video-Instruct",
        "clip_prefix":  "mmproj-SmolVLM2-500M-Video-Instruct",
        "model_variants": ["f16", "Q4_K_M", "Q8_0", "Q2_K"],
        "clip_variants":  ["Q8_0", "f16"],
    },
    "2.2B": {
        "model_repo": "mradermacher/SmolVLM2-2.2B-Instruct-GGUF",
        "clip_repo":  "ggml-org/SmolVLM2-2.2B-Instruct-GGUF",
        "model_prefix": "SmolVLM2-2.2B-Instruct",
        "clip_prefix":  "mmproj-SmolVLM2-2.2B-Instruct",
        "model_variants": ["f16", "Q4_K_M", "Q8_0", "Q2_K"],
        "clip_variants":  ["Q8_0", "f16"],
    },
}

# ----------------------------------------
# Cache for loaded model instance
model_cache = {
    'size': None,
    'model_file': None,
    'clip_file': None,
    'verbose': None,
    'n_threads': None,
    'llm': None
}

# Helper to download weights and return their cache paths
def ensure_weights(cfg, model_file, clip_file):
    # Download model and clip into HF cache (writable, e.g. /tmp/.cache)
    model_path = hf_hub_download(repo_id=cfg['model_repo'], filename=model_file)
    clip_path  = hf_hub_download(repo_id=cfg['clip_repo'],  filename=clip_file)
    return model_path, clip_path

# Custom chat handler
class SmolVLM2ChatHandler(Llava15ChatHandler):
    CHAT_FORMAT = (
        "<|im_start|>"
        "{% for message in messages %}"
        "{{ message['role'] | capitalize }}"
        "{% if message['role']=='user' and message['content'][0]['type']=='image_url' %}:"
        "{% else %}: "
        "{% endif %}"
        "{% for content in message['content'] %}"
        "{% if content['type']=='text' %}{{ content['text'] }}"
        "{% elif content['type']=='image_url' %}"
        "{% if content['image_url'] is string %}"
        "{{ content['image_url'] }}\n"
        "{% elif content['image_url'] is mapping %}"
        "{{ content['image_url']['url'] }}\n"
        "{% endif %}"
        "{% endif %}"
        "{% endfor %}"
        "<end_of_utterance>\n"
        "{% endfor %}"
        "{% if add_generation_prompt %}Assistant:{% endif %}"
    )

# Load and cache LLM (only on dropdown or verbose or thread change)
def update_llm(size, model_file, clip_file, verbose_mode, n_threads):
    # Only reload if any of parameters changed
    if (model_cache['size'], model_cache['model_file'], model_cache['clip_file'], model_cache['verbose'], model_cache['n_threads']) != (size, model_file, clip_file, verbose_mode, n_threads):
        mf, cf = ensure_weights(MODELS[size], model_file, clip_file)
        handler = SmolVLM2ChatHandler(clip_model_path=cf, verbose=verbose_mode)
        llm = Llama(
            model_path=mf,
            chat_handler=handler,
            n_ctx=512,
            verbose=verbose_mode,
            n_threads=n_threads,
            use_mlock=True, 
        )
        model_cache.update({'size': size, 'model_file': mf, 'clip_file': cf, 'verbose': verbose_mode, 'n_threads': n_threads, 'llm': llm})
    return None

# Build weight filename lists
def get_weight_files(size):
    cfg = MODELS[size]
    model_files = [f"{cfg['model_prefix']}.{v}.gguf" for v in cfg['model_variants']]
    clip_files  = [f"{cfg['clip_prefix']}-{v}.gguf"  for v in cfg['clip_variants']]
    return model_files, clip_files

# Caption using cached llm with real-time debug logs
def caption_frame(frame, size, model_file, clip_file, interval_ms, sys_prompt, usr_prompt, reset_clip, verbose_mode):
    debug_msgs = []
    timestamp = time.strftime('%H:%M:%S')
    debug_msgs.append(f"[{timestamp}] Verbose mode: {verbose_mode}")
    timestamp = time.strftime('%H:%M:%S')
    debug_msgs.append(f"[{timestamp}] llama_cpp version: {llama_cpp.__version__}")
    debug_msgs.append(f"[{timestamp}] Python version: {sys.version.split()[0]}")
    timestamp = time.strftime('%H:%M:%S')
    debug_msgs.append(f"[{timestamp}] Received frame shape: {frame.shape}")

    timestamp = time.strftime('%H:%M:%S')
    debug_msgs.append(f"[{timestamp}] Using model weights: {model_file}")
    debug_msgs.append(f"[{timestamp}] Using CLIP weights:  {clip_file}")

    t_resize = time.time()
    img = cv2.resize(frame.copy(), (384, 384))
    elapsed = (time.time() - t_resize) * 1000
    timestamp = time.strftime('%H:%M:%S')
    debug_msgs.append(f"[{timestamp}] Resized to 384x384 in {elapsed:.1f} ms")

    timestamp = time.strftime('%H:%M:%S')
    debug_msgs.append(f"[{timestamp}] Sleeping for {interval_ms} ms")
    time.sleep(interval_ms / 1000)

    t_enc = time.time()
    params = [int(cv2.IMWRITE_JPEG_QUALITY), 75]
    success, jpeg = cv2.imencode('.jpg', img, params)
    elapsed = (time.time() - t_enc) * 1000
    timestamp = time.strftime('%H:%M:%S')
    debug_msgs.append(f"[{timestamp}] JPEG encode: success={success}, bytes={len(jpeg)} in {elapsed:.1f} ms")

    uri = 'data:image/jpeg;base64,' + base64.b64encode(jpeg.tobytes()).decode()
    messages = [
        {"role": "system", "content": sys_prompt},
        {"role": "user",   "content": [
            {"type": "image_url", "image_url": uri},
            {"type": "text",      "text": usr_prompt}
        ]}
    ]

    timestamp = time.strftime('%H:%M:%S')
    debug_msgs.append(f"[{timestamp}] Sending prompt of length {len(usr_prompt)} to LLM")
    if reset_clip:
        model_cache['llm'].chat_handler = SmolVLM2ChatHandler(clip_model_path=clip_file, verbose=verbose_mode)
        timestamp = time.strftime('%H:%M:%S')
        debug_msgs.append(f"[{timestamp}] Reinitialized chat handler")

    timestamp = time.strftime('%H:%M:%S')
    debug_msgs.append(f"[{timestamp}] CPU count = {os.cpu_count()}")
    if model_cache.get('n_threads') is not None:
        debug_msgs.append(f"[{timestamp}] llama_cpp n_threads = {model_cache['n_threads']}")

    t_start = time.time()
    buf = io.StringIO()
    with redirect_stdout(buf), redirect_stderr(buf):
        resp = model_cache['llm'].create_chat_completion(
            messages=messages,
            max_tokens=128,
            temperature=0.1,
            stop=["<end_of_utterance>"]
        )
    for line in buf.getvalue().splitlines():
        timestamp = time.strftime('%H:%M:%S')
        debug_msgs.append(f"[{timestamp}] {line}")

    elapsed = (time.time() - t_start) * 1000
    timestamp = time.strftime('%H:%M:%S')
    debug_msgs.append(f"[{timestamp}] LLM response in {elapsed:.1f} ms")

    content = resp.get('choices', [{}])[0].get('message', {}).get('content', '').strip()
    timestamp = time.strftime('%H:%M:%S')
    debug_msgs.append(f"[{timestamp}] Caption length: {len(content)} chars")

    gc.collect()
    timestamp = time.strftime('%H:%M:%S')
    debug_msgs.append(f"[{timestamp}] Garbage collected")

    return content, "\n".join(debug_msgs)

# Gradio UI
def main():
    logging.basicConfig(level=logging.INFO)
    default = '500M'
    default_verbose = True
    default_threads = 2
    mf, cf = get_weight_files(default)

    with gr.Blocks() as demo:
        gr.Markdown("## 🎥 Real-Time Camera Captioning with Debug Logs")
        with gr.Row():
            size_dd   = gr.Dropdown(list(MODELS.keys()), value=default, label='Model Size')
            model_dd  = gr.Dropdown(mf, value=mf[0], label='Decoder Weights')
            clip_dd   = gr.Dropdown(cf, value=cf[0], label='CLIP Weights')
            verbose_cb= gr.Checkbox(value=default_verbose, label='Verbose Mode')
            thread_dd = gr.Slider(minimum=1, maximum=os.cpu_count(), step=1, value=default_threads, label='CPU Threads (n_threads)')

        def on_size_change(sz, verbose, n_threads):
            mlist, clist = get_weight_files(sz)
            update_llm(sz, mlist[0], clist[0], verbose, n_threads)
            return gr.update(choices=mlist, value=mlist[0]), gr.update(choices=clist, value=clist[0])

        size_dd.change(
            fn=on_size_change,
            inputs=[size_dd, verbose_cb, thread_dd],
            outputs=[model_dd, clip_dd]
        )
        model_dd.change(
            fn=lambda sz, mf, cf, verbose, n_threads: update_llm(sz, mf, cf, verbose, n_threads),
            inputs=[size_dd, model_dd, clip_dd, verbose_cb, thread_dd],
            outputs=[]
        )
        clip_dd.change(
            fn=lambda sz, mf, cf, verbose, n_threads: update_llm(sz, mf, cf, verbose, n_threads),
            inputs=[size_dd, model_dd, clip_dd, verbose_cb, thread_dd],
            outputs=[]
        )
        verbose_cb.change(
            fn=lambda sz, mf, cf, verbose, n_threads: update_llm(sz, mf, cf, verbose, n_threads),
            inputs=[size_dd, model_dd, clip_dd, verbose_cb, thread_dd],
            outputs=[]
        )
        thread_dd.change(
            fn=lambda sz, mf, cf, verbose, n_threads: update_llm(sz, mf, cf, verbose, n_threads),
            inputs=[size_dd, model_dd, clip_dd, verbose_cb, thread_dd],
            outputs=[]
        )
        # Initial load
        update_llm(default, mf[0], cf[0], default_verbose, default_threads)

        interval   = gr.Slider(100, 20000, step=100, value=3000, label='Interval (ms)')
        sys_p      = gr.Textbox(lines=2, value="Focus on key dramatic action…", label='System Prompt')
        usr_p      = gr.Textbox(lines=1, value="Analyze the image and determine if there is any person lying on the floor. Respond with exactly YES or NO.", label='User Prompt')
        reset_clip = gr.Checkbox(value=False, label="Reset CLIP handler each frame")
        cam        = gr.Image(sources=['webcam'], streaming=True, label='Webcam Feed')
        cap        = gr.Textbox(interactive=False, label='Caption')
        log_box    = gr.Textbox(lines=8, interactive=False, label='Debug Log')

        cam.stream(
            fn=caption_frame,
            inputs=[cam, size_dd, model_dd, clip_dd, interval, sys_p, usr_p, reset_clip, verbose_cb],
            outputs=[cap, log_box],
            time_limit=600,
        )

    demo.launch()

if __name__ == '__main__':
    main()