Spaces:
Running
Running
File size: 10,857 Bytes
5c50991 36dacc6 970f416 dd0d47d 221e4b6 ca97f63 221e4b6 970f416 45c2159 34cd1e5 69c8775 9069c3e 221e4b6 5c50991 5a94240 5c50991 5a94240 5c50991 5a94240 5c50991 2881733 22b94a2 5c50991 957ece1 08f659b 957ece1 5c50991 221e4b6 22b94a2 957ece1 2881733 1aba000 2881733 fbaf2b0 2881733 22b94a2 2881733 5c50991 34cd1e5 2881733 34cd1e5 2881733 9069c3e 34cd1e5 a459bee 34cd1e5 5fc1115 34cd1e5 5fc1115 34cd1e5 5fc1115 cc08312 34cd1e5 45c2159 34cd1e5 5462ff3 2881733 5462ff3 34cd1e5 5462ff3 b56b6ec 22b94a2 b56b6ec 34cd1e5 69c8775 34cd1e5 238a95a 34cd1e5 238a95a 34cd1e5 5c50991 fa03d73 65efb90 aa69ba7 5c50991 34cd1e5 5c50991 2881733 aa69ba7 5c50991 22b94a2 e1ad065 22b94a2 2881733 e1ad065 22b94a2 e1ad065 2881733 22b94a2 2881733 22b94a2 2881733 22b94a2 2881733 22b94a2 e1ad065 2881733 01262c3 65efb90 2881733 5c50991 2881733 34cd1e5 5462ff3 292fb3c 221e4b6 970f416 65b3c3a 5c50991 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
import time
import logging
import gradio as gr
import cv2
import os
from pathlib import Path
from huggingface_hub import hf_hub_download
from llama_cpp import Llama
from llama_cpp.llama_chat_format import Llava15ChatHandler
import base64
import gc
import io
from contextlib import redirect_stdout, redirect_stderr
import sys, llama_cpp
# ----------------------------------------
# Model configurations: per-size prefixes and repos
MODELS = {
"256M": {
"model_repo": "mradermacher/SmolVLM2-256M-Video-Instruct-GGUF",
"clip_repo": "ggml-org/SmolVLM2-256M-Video-Instruct-GGUF",
"model_prefix": "SmolVLM2-256M-Video-Instruct",
"clip_prefix": "mmproj-SmolVLM2-256M-Video-Instruct",
"model_variants": ["f16", "Q8_0", "Q2_K", "Q4_K_M"],
"clip_variants": ["Q8_0", "f16"],
},
"500M": {
"model_repo": "mradermacher/SmolVLM2-500M-Video-Instruct-GGUF",
"clip_repo": "ggml-org/SmolVLM2-500M-Video-Instruct-GGUF",
"model_prefix": "SmolVLM2-500M-Video-Instruct",
"clip_prefix": "mmproj-SmolVLM2-500M-Video-Instruct",
"model_variants": ["f16", "Q4_K_M", "Q8_0", "Q2_K"],
"clip_variants": ["Q8_0", "f16"],
},
"2.2B": {
"model_repo": "mradermacher/SmolVLM2-2.2B-Instruct-GGUF",
"clip_repo": "ggml-org/SmolVLM2-2.2B-Instruct-GGUF",
"model_prefix": "SmolVLM2-2.2B-Instruct",
"clip_prefix": "mmproj-SmolVLM2-2.2B-Instruct",
"model_variants": ["f16", "Q4_K_M", "Q8_0", "Q2_K"],
"clip_variants": ["Q8_0", "f16"],
},
}
# ----------------------------------------
# Cache for loaded model instance
model_cache = {
'size': None,
'model_file': None,
'clip_file': None,
'verbose': None,
'n_threads': None,
'llm': None
}
# Helper to download weights and return their cache paths
def ensure_weights(cfg, model_file, clip_file):
# Download model and clip into HF cache (writable, e.g. /tmp/.cache)
model_path = hf_hub_download(repo_id=cfg['model_repo'], filename=model_file)
clip_path = hf_hub_download(repo_id=cfg['clip_repo'], filename=clip_file)
return model_path, clip_path
# Custom chat handler
class SmolVLM2ChatHandler(Llava15ChatHandler):
CHAT_FORMAT = (
"<|im_start|>"
"{% for message in messages %}"
"{{ message['role'] | capitalize }}"
"{% if message['role']=='user' and message['content'][0]['type']=='image_url' %}:"
"{% else %}: "
"{% endif %}"
"{% for content in message['content'] %}"
"{% if content['type']=='text' %}{{ content['text'] }}"
"{% elif content['type']=='image_url' %}"
"{% if content['image_url'] is string %}"
"{{ content['image_url'] }}\n"
"{% elif content['image_url'] is mapping %}"
"{{ content['image_url']['url'] }}\n"
"{% endif %}"
"{% endif %}"
"{% endfor %}"
"<end_of_utterance>\n"
"{% endfor %}"
"{% if add_generation_prompt %}Assistant:{% endif %}"
)
# Load and cache LLM (only on dropdown or verbose or thread change)
def update_llm(size, model_file, clip_file, verbose_mode, n_threads):
# Only reload if any of parameters changed
if (model_cache['size'], model_cache['model_file'], model_cache['clip_file'], model_cache['verbose'], model_cache['n_threads']) != (size, model_file, clip_file, verbose_mode, n_threads):
mf, cf = ensure_weights(MODELS[size], model_file, clip_file)
handler = SmolVLM2ChatHandler(clip_model_path=cf, verbose=verbose_mode)
llm = Llama(
model_path=mf,
chat_handler=handler,
n_ctx=512,
verbose=verbose_mode,
n_threads=n_threads,
use_mlock=True,
)
model_cache.update({'size': size, 'model_file': mf, 'clip_file': cf, 'verbose': verbose_mode, 'n_threads': n_threads, 'llm': llm})
return None
# Build weight filename lists
def get_weight_files(size):
cfg = MODELS[size]
model_files = [f"{cfg['model_prefix']}.{v}.gguf" for v in cfg['model_variants']]
clip_files = [f"{cfg['clip_prefix']}-{v}.gguf" for v in cfg['clip_variants']]
return model_files, clip_files
# Caption using cached llm with real-time debug logs
def caption_frame(frame, size, model_file, clip_file, interval_ms, sys_prompt, usr_prompt, reset_clip, verbose_mode):
debug_msgs = []
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] Verbose mode: {verbose_mode}")
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] llama_cpp version: {llama_cpp.__version__}")
debug_msgs.append(f"[{timestamp}] Python version: {sys.version.split()[0]}")
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] Received frame shape: {frame.shape}")
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] Using model weights: {model_file}")
debug_msgs.append(f"[{timestamp}] Using CLIP weights: {clip_file}")
t_resize = time.time()
img = cv2.resize(frame.copy(), (384, 384))
elapsed = (time.time() - t_resize) * 1000
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] Resized to 384x384 in {elapsed:.1f} ms")
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] Sleeping for {interval_ms} ms")
time.sleep(interval_ms / 1000)
t_enc = time.time()
params = [int(cv2.IMWRITE_JPEG_QUALITY), 75]
success, jpeg = cv2.imencode('.jpg', img, params)
elapsed = (time.time() - t_enc) * 1000
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] JPEG encode: success={success}, bytes={len(jpeg)} in {elapsed:.1f} ms")
uri = 'data:image/jpeg;base64,' + base64.b64encode(jpeg.tobytes()).decode()
messages = [
{"role": "system", "content": sys_prompt},
{"role": "user", "content": [
{"type": "image_url", "image_url": uri},
{"type": "text", "text": usr_prompt}
]}
]
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] Sending prompt of length {len(usr_prompt)} to LLM")
if reset_clip:
model_cache['llm'].chat_handler = SmolVLM2ChatHandler(clip_model_path=clip_file, verbose=verbose_mode)
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] Reinitialized chat handler")
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] CPU count = {os.cpu_count()}")
if model_cache.get('n_threads') is not None:
debug_msgs.append(f"[{timestamp}] llama_cpp n_threads = {model_cache['n_threads']}")
t_start = time.time()
buf = io.StringIO()
with redirect_stdout(buf), redirect_stderr(buf):
resp = model_cache['llm'].create_chat_completion(
messages=messages,
max_tokens=128,
temperature=0.1,
stop=["<end_of_utterance>"]
)
for line in buf.getvalue().splitlines():
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] {line}")
elapsed = (time.time() - t_start) * 1000
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] LLM response in {elapsed:.1f} ms")
content = resp.get('choices', [{}])[0].get('message', {}).get('content', '').strip()
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] Caption length: {len(content)} chars")
gc.collect()
timestamp = time.strftime('%H:%M:%S')
debug_msgs.append(f"[{timestamp}] Garbage collected")
return content, "\n".join(debug_msgs)
# Gradio UI
def main():
logging.basicConfig(level=logging.INFO)
default = '500M'
default_verbose = True
default_threads = 2
mf, cf = get_weight_files(default)
with gr.Blocks() as demo:
gr.Markdown("## 🎥 Real-Time Camera Captioning with Debug Logs")
with gr.Row():
size_dd = gr.Dropdown(list(MODELS.keys()), value=default, label='Model Size')
model_dd = gr.Dropdown(mf, value=mf[0], label='Decoder Weights')
clip_dd = gr.Dropdown(cf, value=cf[0], label='CLIP Weights')
verbose_cb= gr.Checkbox(value=default_verbose, label='Verbose Mode')
thread_dd = gr.Slider(minimum=1, maximum=os.cpu_count(), step=1, value=default_threads, label='CPU Threads (n_threads)')
def on_size_change(sz, verbose, n_threads):
mlist, clist = get_weight_files(sz)
update_llm(sz, mlist[0], clist[0], verbose, n_threads)
return gr.update(choices=mlist, value=mlist[0]), gr.update(choices=clist, value=clist[0])
size_dd.change(
fn=on_size_change,
inputs=[size_dd, verbose_cb, thread_dd],
outputs=[model_dd, clip_dd]
)
model_dd.change(
fn=lambda sz, mf, cf, verbose, n_threads: update_llm(sz, mf, cf, verbose, n_threads),
inputs=[size_dd, model_dd, clip_dd, verbose_cb, thread_dd],
outputs=[]
)
clip_dd.change(
fn=lambda sz, mf, cf, verbose, n_threads: update_llm(sz, mf, cf, verbose, n_threads),
inputs=[size_dd, model_dd, clip_dd, verbose_cb, thread_dd],
outputs=[]
)
verbose_cb.change(
fn=lambda sz, mf, cf, verbose, n_threads: update_llm(sz, mf, cf, verbose, n_threads),
inputs=[size_dd, model_dd, clip_dd, verbose_cb, thread_dd],
outputs=[]
)
thread_dd.change(
fn=lambda sz, mf, cf, verbose, n_threads: update_llm(sz, mf, cf, verbose, n_threads),
inputs=[size_dd, model_dd, clip_dd, verbose_cb, thread_dd],
outputs=[]
)
# Initial load
update_llm(default, mf[0], cf[0], default_verbose, default_threads)
interval = gr.Slider(100, 20000, step=100, value=3000, label='Interval (ms)')
sys_p = gr.Textbox(lines=2, value="Focus on key dramatic action…", label='System Prompt')
usr_p = gr.Textbox(lines=1, value="Analyze the image and determine if there is any person lying on the floor. Respond with exactly YES or NO.", label='User Prompt')
reset_clip = gr.Checkbox(value=False, label="Reset CLIP handler each frame")
cam = gr.Image(sources=['webcam'], streaming=True, label='Webcam Feed')
cap = gr.Textbox(interactive=False, label='Caption')
log_box = gr.Textbox(lines=8, interactive=False, label='Debug Log')
cam.stream(
fn=caption_frame,
inputs=[cam, size_dd, model_dd, clip_dd, interval, sys_p, usr_p, reset_clip, verbose_cb],
outputs=[cap, log_box],
time_limit=600,
)
demo.launch()
if __name__ == '__main__':
main()
|