Spaces:
Running
Running
1. add more models,
Browse files2. user can define system and user prompt
3. user can decide update interval
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import logging
|
2 |
import gradio as gr
|
3 |
import cv2
|
@@ -7,17 +8,60 @@ from pathlib import Path
|
|
7 |
from huggingface_hub import hf_hub_download
|
8 |
from llama_cpp import Llama
|
9 |
from llama_cpp.llama_chat_format import Llava15ChatHandler
|
10 |
-
from termcolor import cprint
|
11 |
|
12 |
-
#
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
class SmolVLM2ChatHandler(Llava15ChatHandler):
|
22 |
CHAT_FORMAT = (
|
23 |
"<|im_start|>"
|
@@ -41,127 +85,86 @@ class SmolVLM2ChatHandler(Llava15ChatHandler):
|
|
41 |
"{% if add_generation_prompt %}Assistant:{% endif %}"
|
42 |
)
|
43 |
|
44 |
-
#
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
def load_llm():
|
73 |
-
logging.debug("Loading Llama model with SmolVLM2ChatHandler...")
|
74 |
-
handler = SmolVLM2ChatHandler(clip_model_path=CLIP_FILE, verbose=False)
|
75 |
-
llm = Llama(
|
76 |
-
model_path=MODEL_FILE,
|
77 |
-
chat_handler=handler,
|
78 |
-
n_ctx=1024,
|
79 |
-
verbose=False,
|
80 |
-
)
|
81 |
-
logging.info("Llama model loaded successfully.")
|
82 |
-
return llm
|
83 |
-
|
84 |
-
llm = load_llm()
|
85 |
-
|
86 |
-
# βββββββββββββββββββββββββββββββββββββββββ
|
87 |
-
# 4) Captioning helper (stateless prompt)
|
88 |
-
def caption_frame(frame):
|
89 |
-
logging.debug("caption_frame called.")
|
90 |
-
# make a writable copy
|
91 |
-
frame = frame.copy()
|
92 |
-
frame = cv2.resize(frame, (384, 384))
|
93 |
-
logging.debug(f"Frame shape: {frame.shape}, dtype: {frame.dtype}")
|
94 |
-
|
95 |
-
# save frame to temporary file for URI
|
96 |
-
with tempfile.NamedTemporaryFile(suffix='.jpg') as f:
|
97 |
-
success = cv2.imwrite(f.name, frame)
|
98 |
-
if not success:
|
99 |
-
logging.error(f"Failed to write frame to {f.name}")
|
100 |
-
else:
|
101 |
-
logging.debug(f"Frame written to temp file: {f.name}")
|
102 |
-
|
103 |
-
uri = Path(f.name).absolute().as_uri()
|
104 |
-
logging.debug(f"Frame URI: {uri}")
|
105 |
-
|
106 |
-
# build a single prompt string
|
107 |
messages = [
|
108 |
-
{
|
109 |
-
|
110 |
-
"
|
111 |
-
|
112 |
-
|
113 |
-
"crucial to understanding the main action."
|
114 |
-
),
|
115 |
-
},
|
116 |
-
{
|
117 |
-
"role": "user",
|
118 |
-
"content": [
|
119 |
-
{"type": "image_url", "image_url": uri},
|
120 |
-
{"type": "text", "text": "What is happening in this image?"},
|
121 |
-
],
|
122 |
-
},
|
123 |
]
|
124 |
-
|
125 |
-
|
126 |
-
# stateless completion call
|
127 |
-
logging.debug("Resetting LLM and clearing cache.")
|
128 |
-
llm.chat_handler.__init__(clip_model_path=CLIP_FILE, verbose=False)
|
129 |
-
logging.debug("Sending chat completion request...")
|
130 |
resp = llm.create_chat_completion(
|
131 |
messages=messages,
|
132 |
max_tokens=128,
|
133 |
temperature=0.1,
|
134 |
-
stop=["<end_of_utterance>"]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
)
|
136 |
-
logging.debug(f"LLM raw response: {resp}")
|
137 |
-
|
138 |
-
# extract caption
|
139 |
-
caption = (resp.get("choices", [])[0]["message"].get("content", "") or "").strip()
|
140 |
-
logging.debug(f"Extracted caption: {caption}")
|
141 |
-
return caption
|
142 |
-
|
143 |
-
# βββββββββββββββββββββββββββββββββββββββββ
|
144 |
-
# 5) Gradio UI (v5 streaming)
|
145 |
-
demo = gr.Blocks()
|
146 |
-
with demo:
|
147 |
-
gr.Markdown("## π₯ Real-Time Camera Captioning with SmolVLM2 (CPU)")
|
148 |
-
input_img = gr.Image(sources=["webcam"], streaming=True, label="Webcam Feed")
|
149 |
-
caption_box = gr.Textbox(interactive=False, label="Caption")
|
150 |
-
|
151 |
-
# stream frames and captions
|
152 |
-
input_img.stream(
|
153 |
-
fn=caption_frame,
|
154 |
-
inputs=[input_img],
|
155 |
-
outputs=[caption_box],
|
156 |
-
stream_every=3,
|
157 |
-
time_limit=600
|
158 |
-
)
|
159 |
|
160 |
-
if __name__ == "__main__":
|
161 |
-
logging.debug("Launching Gradio demo...")
|
162 |
demo.launch()
|
163 |
|
164 |
-
|
165 |
-
|
166 |
-
# 2. customizable interval
|
167 |
-
# 3. customizable system and user prompts
|
|
|
1 |
+
import time
|
2 |
import logging
|
3 |
import gradio as gr
|
4 |
import cv2
|
|
|
8 |
from huggingface_hub import hf_hub_download
|
9 |
from llama_cpp import Llama
|
10 |
from llama_cpp.llama_chat_format import Llava15ChatHandler
|
|
|
11 |
|
12 |
+
# ----------------------------------------
|
13 |
+
# Model configurations: per-size prefixes and repos
|
14 |
+
MODELS = {
|
15 |
+
"256M": {
|
16 |
+
"model_repo": "mradermacher/SmolVLM2-256M-Video-Instruct-GGUF",
|
17 |
+
"clip_repo": "ggml-org/SmolVLM2-256M-Video-Instruct-GGUF",
|
18 |
+
"model_prefix": "SmolVLM2-256M-Video-Instruct",
|
19 |
+
"clip_prefix": "mmproj-SmolVLM2-256M-Video-Instruct",
|
20 |
+
"model_variants": ["Q8_0", "f16"],
|
21 |
+
"clip_variants": ["Q8_0", "f16"],
|
22 |
+
},
|
23 |
+
"500M": {
|
24 |
+
"model_repo": "mradermacher/SmolVLM2-500M-Video-Instruct-GGUF",
|
25 |
+
"clip_repo": "ggml-org/SmolVLM2-500M-Video-Instruct-GGUF",
|
26 |
+
"model_prefix": "SmolVLM2-500M-Video-Instruct",
|
27 |
+
"clip_prefix": "mmproj-SmolVLM2-500M-Video-Instruct",
|
28 |
+
"model_variants": ["Q8_0", "f16"],
|
29 |
+
"clip_variants": ["Q8_0", "f16"],
|
30 |
+
},
|
31 |
+
"2.2B": {
|
32 |
+
"model_repo": "mradermacher/SmolVLM2-2.2B-Instruct-GGUF",
|
33 |
+
"clip_repo": "ggml-org/SmolVLM2-2.2B-Instruct-GGUF",
|
34 |
+
"model_prefix": "SmolVLM2-2.2B-Instruct",
|
35 |
+
"clip_prefix": "mmproj-SmolVLM2-2.2B-Instruct",
|
36 |
+
"model_variants": ["Q4_K_M", "Q8_0", "f16"],
|
37 |
+
"clip_variants": ["Q8_0", "f16"],
|
38 |
+
},
|
39 |
+
}
|
40 |
+
|
41 |
+
# ----------------------------------------
|
42 |
+
# Cache for loaded model instance
|
43 |
+
model_cache = {
|
44 |
+
'size': None,
|
45 |
+
'model_file': None,
|
46 |
+
'clip_file': None,
|
47 |
+
'llm': None
|
48 |
+
}
|
49 |
+
|
50 |
+
# Helper to download & symlink weights
|
51 |
+
|
52 |
+
def ensure_weights(size, model_file, clip_file):
|
53 |
+
cfg = MODELS[size]
|
54 |
+
if not os.path.exists(model_file):
|
55 |
+
logging.info(f"Downloading model file {model_file} from {cfg['model_repo']}...")
|
56 |
+
path = hf_hub_download(repo_id=cfg['model_repo'], filename=model_file)
|
57 |
+
os.symlink(path, model_file)
|
58 |
+
if not os.path.exists(clip_file):
|
59 |
+
logging.info(f"Downloading CLIP file {clip_file} from {cfg['clip_repo']}...")
|
60 |
+
path = hf_hub_download(repo_id=cfg['clip_repo'], filename=clip_file)
|
61 |
+
os.symlink(path, clip_file)
|
62 |
+
return model_file, clip_file
|
63 |
+
|
64 |
+
# Custom chat handler
|
65 |
class SmolVLM2ChatHandler(Llava15ChatHandler):
|
66 |
CHAT_FORMAT = (
|
67 |
"<|im_start|>"
|
|
|
85 |
"{% if add_generation_prompt %}Assistant:{% endif %}"
|
86 |
)
|
87 |
|
88 |
+
# Load and cache LLM (only on dropdown change)
|
89 |
+
|
90 |
+
def update_llm(size, model_file, clip_file):
|
91 |
+
if (model_cache['size'], model_cache['model_file'], model_cache['clip_file']) != (size, model_file, clip_file):
|
92 |
+
mf, cf = ensure_weights(size, model_file, clip_file)
|
93 |
+
handler = SmolVLM2ChatHandler(clip_model_path=cf, verbose=False)
|
94 |
+
llm = Llama(model_path=mf, chat_handler=handler, n_ctx=1024, verbose=False)
|
95 |
+
model_cache.update({'size': size, 'model_file': mf, 'clip_file': cf, 'llm': llm})
|
96 |
+
return None # no UI output
|
97 |
+
|
98 |
+
# Build weight filename lists
|
99 |
+
|
100 |
+
def get_weight_files(size):
|
101 |
+
cfg = MODELS[size]
|
102 |
+
model_files = [f"{cfg['model_prefix']}.{v}.gguf" for v in cfg['model_variants']]
|
103 |
+
clip_files = [f"{cfg['clip_prefix']}-{v}.gguf" for v in cfg['clip_variants']]
|
104 |
+
return model_files, clip_files
|
105 |
+
|
106 |
+
# Caption using cached llm
|
107 |
+
|
108 |
+
def caption_frame(frame, size, model_file, clip_file, interval_ms, sys_prompt, usr_prompt):
|
109 |
+
# Use pre-loaded model
|
110 |
+
llm = model_cache['llm']
|
111 |
+
time.sleep(interval_ms / 1000)
|
112 |
+
img = cv2.resize(frame.copy(), (384, 384))
|
113 |
+
with tempfile.NamedTemporaryFile(suffix='.jpg') as tmp:
|
114 |
+
cv2.imwrite(tmp.name, img)
|
115 |
+
uri = Path(tmp.name).absolute().as_uri()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
messages = [
|
117 |
+
{"role": "system", "content": sys_prompt},
|
118 |
+
{"role": "user", "content": [
|
119 |
+
{"type": "image_url", "image_url": uri},
|
120 |
+
{"type": "text", "text": usr_prompt}
|
121 |
+
]}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
]
|
123 |
+
# re-init handler
|
124 |
+
llm.chat_handler.__init__(clip_model_path=clip_file, verbose=False)
|
|
|
|
|
|
|
|
|
125 |
resp = llm.create_chat_completion(
|
126 |
messages=messages,
|
127 |
max_tokens=128,
|
128 |
temperature=0.1,
|
129 |
+
stop=["<end_of_utterance>"]
|
130 |
+
)
|
131 |
+
return resp.get('choices', [{}])[0].get('message', {}).get('content', '').strip()
|
132 |
+
|
133 |
+
# Gradio UI
|
134 |
+
|
135 |
+
def main():
|
136 |
+
logging.basicConfig(level=logging.INFO)
|
137 |
+
default = '2.2B'
|
138 |
+
mf, cf = get_weight_files(default)
|
139 |
+
|
140 |
+
with gr.Blocks() as demo:
|
141 |
+
gr.Markdown("## π₯ Real-Time Camera Captioning")
|
142 |
+
with gr.Row():
|
143 |
+
size_dd = gr.Dropdown(list(MODELS.keys()), value=default, label='Model Size')
|
144 |
+
model_dd = gr.Dropdown(mf, value=mf[0], label='Decoder Weights')
|
145 |
+
clip_dd = gr.Dropdown(cf, value=cf[0], label='CLIP Weights')
|
146 |
+
|
147 |
+
# On any selection change, preload the llm
|
148 |
+
size_dd.change(fn=lambda s, m, c: update_llm(s, m, c), inputs=[size_dd, model_dd, clip_dd], outputs=[])
|
149 |
+
model_dd.change(fn=lambda s, m, c: update_llm(s, m, c), inputs=[size_dd, model_dd, clip_dd], outputs=[])
|
150 |
+
clip_dd.change(fn=lambda s, m, c: update_llm(s, m, c), inputs=[size_dd, model_dd, clip_dd], outputs=[])
|
151 |
+
|
152 |
+
# Initial load
|
153 |
+
update_llm(default, mf[0], cf[0])
|
154 |
+
|
155 |
+
interval = gr.Slider(100, 20000, step=100, value=1000, label='Interval (ms)')
|
156 |
+
sys_p = gr.Textbox(lines=2, value="Focus on key dramatic actionβ¦", label='System Prompt')
|
157 |
+
usr_p = gr.Textbox(lines=1, value="What is happening in this image?", label='User Prompt')
|
158 |
+
cam = gr.Image(sources=['webcam'], streaming=True, label='Webcam Feed')
|
159 |
+
cap = gr.Textbox(interactive=False, label='Caption')
|
160 |
+
|
161 |
+
cam.stream(
|
162 |
+
fn=caption_frame,
|
163 |
+
inputs=[cam, size_dd, model_dd, clip_dd, interval, sys_p, usr_p],
|
164 |
+
outputs=[cap], time_limit=600
|
165 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
|
|
|
|
167 |
demo.launch()
|
168 |
|
169 |
+
if __name__ == '__main__':
|
170 |
+
main()
|
|
|
|