File size: 6,594 Bytes
5c50991
36dacc6
970f416
dd0d47d
221e4b6
 
 
ca97f63
221e4b6
970f416
221e4b6
5c50991
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
221e4b6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c50991
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
970f416
5c50991
 
 
 
 
970f416
5c50991
 
970f416
36dacc6
76a0b57
970f416
5c50991
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9c43a8
5c50991
 
 
 
 
 
 
 
 
292fb3c
221e4b6
970f416
65b3c3a
5c50991
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
import time
import logging
import gradio as gr
import cv2
import tempfile
import os
from pathlib import Path
from huggingface_hub import hf_hub_download
from llama_cpp import Llama
from llama_cpp.llama_chat_format import Llava15ChatHandler

# ----------------------------------------
# Model configurations: per-size prefixes and repos
MODELS = {
    "256M": {
        "model_repo": "mradermacher/SmolVLM2-256M-Video-Instruct-GGUF",
        "clip_repo":  "ggml-org/SmolVLM2-256M-Video-Instruct-GGUF",
        "model_prefix": "SmolVLM2-256M-Video-Instruct",
        "clip_prefix":  "mmproj-SmolVLM2-256M-Video-Instruct",
        "model_variants": ["Q8_0", "f16"],
        "clip_variants":  ["Q8_0", "f16"],
    },
    "500M": {
        "model_repo": "mradermacher/SmolVLM2-500M-Video-Instruct-GGUF",
        "clip_repo":  "ggml-org/SmolVLM2-500M-Video-Instruct-GGUF",
        "model_prefix": "SmolVLM2-500M-Video-Instruct",
        "clip_prefix":  "mmproj-SmolVLM2-500M-Video-Instruct",
        "model_variants": ["Q8_0", "f16"],
        "clip_variants":  ["Q8_0", "f16"],
    },
    "2.2B": {
        "model_repo": "mradermacher/SmolVLM2-2.2B-Instruct-GGUF",
        "clip_repo":  "ggml-org/SmolVLM2-2.2B-Instruct-GGUF",
        "model_prefix": "SmolVLM2-2.2B-Instruct",
        "clip_prefix":  "mmproj-SmolVLM2-2.2B-Instruct",
        "model_variants": ["Q4_K_M", "Q8_0", "f16"],
        "clip_variants":  ["Q8_0", "f16"],
    },
}

# ----------------------------------------
# Cache for loaded model instance
model_cache = {
    'size': None,
    'model_file': None,
    'clip_file': None,
    'llm': None
}

# Helper to download & symlink weights

def ensure_weights(size, model_file, clip_file):
    cfg = MODELS[size]
    if not os.path.exists(model_file):
        logging.info(f"Downloading model file {model_file} from {cfg['model_repo']}...")
        path = hf_hub_download(repo_id=cfg['model_repo'], filename=model_file)
        os.symlink(path, model_file)
    if not os.path.exists(clip_file):
        logging.info(f"Downloading CLIP file {clip_file} from {cfg['clip_repo']}...")
        path = hf_hub_download(repo_id=cfg['clip_repo'], filename=clip_file)
        os.symlink(path, clip_file)
    return model_file, clip_file

# Custom chat handler
class SmolVLM2ChatHandler(Llava15ChatHandler):
    CHAT_FORMAT = (
        "<|im_start|>"
        "{% for message in messages %}"
        "{{ message['role'] | capitalize }}"
        "{% if message['role']=='user' and message['content'][0]['type']=='image_url' %}:"
        "{% else %}: "
        "{% endif %}"
        "{% for content in message['content'] %}"
        "{% if content['type']=='text' %}{{ content['text'] }}"
        "{% elif content['type']=='image_url' %}"
        "{% if content['image_url'] is string %}"
        "{{ content['image_url'] }}\n"
        "{% elif content['image_url'] is mapping %}"
        "{{ content['image_url']['url'] }}\n"
        "{% endif %}"
        "{% endif %}"
        "{% endfor %}"
        "<end_of_utterance>\n"
        "{% endfor %}"
        "{% if add_generation_prompt %}Assistant:{% endif %}"
    )

# Load and cache LLM (only on dropdown change)

def update_llm(size, model_file, clip_file):
    if (model_cache['size'], model_cache['model_file'], model_cache['clip_file']) != (size, model_file, clip_file):
        mf, cf = ensure_weights(size, model_file, clip_file)
        handler = SmolVLM2ChatHandler(clip_model_path=cf, verbose=False)
        llm = Llama(model_path=mf, chat_handler=handler, n_ctx=1024, verbose=False)
        model_cache.update({'size': size, 'model_file': mf, 'clip_file': cf, 'llm': llm})
    return None  # no UI output

# Build weight filename lists

def get_weight_files(size):
    cfg = MODELS[size]
    model_files = [f"{cfg['model_prefix']}.{v}.gguf" for v in cfg['model_variants']]
    clip_files  = [f"{cfg['clip_prefix']}-{v}.gguf"  for v in cfg['clip_variants']]
    return model_files, clip_files

# Caption using cached llm

def caption_frame(frame, size, model_file, clip_file, interval_ms, sys_prompt, usr_prompt):
    # Use pre-loaded model
    llm = model_cache['llm']
    time.sleep(interval_ms / 1000)
    img = cv2.resize(frame.copy(), (384, 384))
    with tempfile.NamedTemporaryFile(suffix='.jpg') as tmp:
        cv2.imwrite(tmp.name, img)
        uri = Path(tmp.name).absolute().as_uri()
        messages = [
            {"role": "system", "content": sys_prompt},
            {"role": "user",   "content": [
                {"type": "image_url", "image_url": uri},
                {"type": "text",      "text": usr_prompt}
            ]}
        ]
        # re-init handler
        llm.chat_handler.__init__(clip_model_path=clip_file, verbose=False)
        resp = llm.create_chat_completion(
            messages=messages,
            max_tokens=128,
            temperature=0.1,
            stop=["<end_of_utterance>"]
        )
    return resp.get('choices', [{}])[0].get('message', {}).get('content', '').strip()

# Gradio UI

def main():
    logging.basicConfig(level=logging.INFO)
    default = '2.2B'
    mf, cf = get_weight_files(default)

    with gr.Blocks() as demo:
        gr.Markdown("## 🎥 Real-Time Camera Captioning")
        with gr.Row():
            size_dd   = gr.Dropdown(list(MODELS.keys()), value=default, label='Model Size')
            model_dd  = gr.Dropdown(mf, value=mf[0], label='Decoder Weights')
            clip_dd   = gr.Dropdown(cf, value=cf[0], label='CLIP Weights')

        # On any selection change, preload the llm
        size_dd.change(fn=lambda s, m, c: update_llm(s, m, c), inputs=[size_dd, model_dd, clip_dd], outputs=[])
        model_dd.change(fn=lambda s, m, c: update_llm(s, m, c), inputs=[size_dd, model_dd, clip_dd], outputs=[])
        clip_dd.change(fn=lambda s, m, c: update_llm(s, m, c), inputs=[size_dd, model_dd, clip_dd], outputs=[])

        # Initial load
        update_llm(default, mf[0], cf[0])

        interval = gr.Slider(100, 20000, step=100, value=3000, label='Interval (ms)')
        sys_p = gr.Textbox(lines=2, value="Focus on key dramatic action…", label='System Prompt')
        usr_p = gr.Textbox(lines=1, value="What is happening in this image?", label='User Prompt')
        cam   = gr.Image(sources=['webcam'], streaming=True, label='Webcam Feed')
        cap   = gr.Textbox(interactive=False, label='Caption')

        cam.stream(
            fn=caption_frame,
            inputs=[cam, size_dd, model_dd, clip_dd, interval, sys_p, usr_p],
            outputs=[cap], time_limit=600
        )

    demo.launch()

if __name__ == '__main__':
    main()