Spaces:
Running
Running
File size: 6,594 Bytes
5c50991 36dacc6 970f416 dd0d47d 221e4b6 ca97f63 221e4b6 970f416 221e4b6 5c50991 221e4b6 5c50991 970f416 5c50991 970f416 5c50991 970f416 36dacc6 76a0b57 970f416 5c50991 c9c43a8 5c50991 292fb3c 221e4b6 970f416 65b3c3a 5c50991 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 |
import time
import logging
import gradio as gr
import cv2
import tempfile
import os
from pathlib import Path
from huggingface_hub import hf_hub_download
from llama_cpp import Llama
from llama_cpp.llama_chat_format import Llava15ChatHandler
# ----------------------------------------
# Model configurations: per-size prefixes and repos
MODELS = {
"256M": {
"model_repo": "mradermacher/SmolVLM2-256M-Video-Instruct-GGUF",
"clip_repo": "ggml-org/SmolVLM2-256M-Video-Instruct-GGUF",
"model_prefix": "SmolVLM2-256M-Video-Instruct",
"clip_prefix": "mmproj-SmolVLM2-256M-Video-Instruct",
"model_variants": ["Q8_0", "f16"],
"clip_variants": ["Q8_0", "f16"],
},
"500M": {
"model_repo": "mradermacher/SmolVLM2-500M-Video-Instruct-GGUF",
"clip_repo": "ggml-org/SmolVLM2-500M-Video-Instruct-GGUF",
"model_prefix": "SmolVLM2-500M-Video-Instruct",
"clip_prefix": "mmproj-SmolVLM2-500M-Video-Instruct",
"model_variants": ["Q8_0", "f16"],
"clip_variants": ["Q8_0", "f16"],
},
"2.2B": {
"model_repo": "mradermacher/SmolVLM2-2.2B-Instruct-GGUF",
"clip_repo": "ggml-org/SmolVLM2-2.2B-Instruct-GGUF",
"model_prefix": "SmolVLM2-2.2B-Instruct",
"clip_prefix": "mmproj-SmolVLM2-2.2B-Instruct",
"model_variants": ["Q4_K_M", "Q8_0", "f16"],
"clip_variants": ["Q8_0", "f16"],
},
}
# ----------------------------------------
# Cache for loaded model instance
model_cache = {
'size': None,
'model_file': None,
'clip_file': None,
'llm': None
}
# Helper to download & symlink weights
def ensure_weights(size, model_file, clip_file):
cfg = MODELS[size]
if not os.path.exists(model_file):
logging.info(f"Downloading model file {model_file} from {cfg['model_repo']}...")
path = hf_hub_download(repo_id=cfg['model_repo'], filename=model_file)
os.symlink(path, model_file)
if not os.path.exists(clip_file):
logging.info(f"Downloading CLIP file {clip_file} from {cfg['clip_repo']}...")
path = hf_hub_download(repo_id=cfg['clip_repo'], filename=clip_file)
os.symlink(path, clip_file)
return model_file, clip_file
# Custom chat handler
class SmolVLM2ChatHandler(Llava15ChatHandler):
CHAT_FORMAT = (
"<|im_start|>"
"{% for message in messages %}"
"{{ message['role'] | capitalize }}"
"{% if message['role']=='user' and message['content'][0]['type']=='image_url' %}:"
"{% else %}: "
"{% endif %}"
"{% for content in message['content'] %}"
"{% if content['type']=='text' %}{{ content['text'] }}"
"{% elif content['type']=='image_url' %}"
"{% if content['image_url'] is string %}"
"{{ content['image_url'] }}\n"
"{% elif content['image_url'] is mapping %}"
"{{ content['image_url']['url'] }}\n"
"{% endif %}"
"{% endif %}"
"{% endfor %}"
"<end_of_utterance>\n"
"{% endfor %}"
"{% if add_generation_prompt %}Assistant:{% endif %}"
)
# Load and cache LLM (only on dropdown change)
def update_llm(size, model_file, clip_file):
if (model_cache['size'], model_cache['model_file'], model_cache['clip_file']) != (size, model_file, clip_file):
mf, cf = ensure_weights(size, model_file, clip_file)
handler = SmolVLM2ChatHandler(clip_model_path=cf, verbose=False)
llm = Llama(model_path=mf, chat_handler=handler, n_ctx=1024, verbose=False)
model_cache.update({'size': size, 'model_file': mf, 'clip_file': cf, 'llm': llm})
return None # no UI output
# Build weight filename lists
def get_weight_files(size):
cfg = MODELS[size]
model_files = [f"{cfg['model_prefix']}.{v}.gguf" for v in cfg['model_variants']]
clip_files = [f"{cfg['clip_prefix']}-{v}.gguf" for v in cfg['clip_variants']]
return model_files, clip_files
# Caption using cached llm
def caption_frame(frame, size, model_file, clip_file, interval_ms, sys_prompt, usr_prompt):
# Use pre-loaded model
llm = model_cache['llm']
time.sleep(interval_ms / 1000)
img = cv2.resize(frame.copy(), (384, 384))
with tempfile.NamedTemporaryFile(suffix='.jpg') as tmp:
cv2.imwrite(tmp.name, img)
uri = Path(tmp.name).absolute().as_uri()
messages = [
{"role": "system", "content": sys_prompt},
{"role": "user", "content": [
{"type": "image_url", "image_url": uri},
{"type": "text", "text": usr_prompt}
]}
]
# re-init handler
llm.chat_handler.__init__(clip_model_path=clip_file, verbose=False)
resp = llm.create_chat_completion(
messages=messages,
max_tokens=128,
temperature=0.1,
stop=["<end_of_utterance>"]
)
return resp.get('choices', [{}])[0].get('message', {}).get('content', '').strip()
# Gradio UI
def main():
logging.basicConfig(level=logging.INFO)
default = '2.2B'
mf, cf = get_weight_files(default)
with gr.Blocks() as demo:
gr.Markdown("## 🎥 Real-Time Camera Captioning")
with gr.Row():
size_dd = gr.Dropdown(list(MODELS.keys()), value=default, label='Model Size')
model_dd = gr.Dropdown(mf, value=mf[0], label='Decoder Weights')
clip_dd = gr.Dropdown(cf, value=cf[0], label='CLIP Weights')
# On any selection change, preload the llm
size_dd.change(fn=lambda s, m, c: update_llm(s, m, c), inputs=[size_dd, model_dd, clip_dd], outputs=[])
model_dd.change(fn=lambda s, m, c: update_llm(s, m, c), inputs=[size_dd, model_dd, clip_dd], outputs=[])
clip_dd.change(fn=lambda s, m, c: update_llm(s, m, c), inputs=[size_dd, model_dd, clip_dd], outputs=[])
# Initial load
update_llm(default, mf[0], cf[0])
interval = gr.Slider(100, 20000, step=100, value=3000, label='Interval (ms)')
sys_p = gr.Textbox(lines=2, value="Focus on key dramatic action…", label='System Prompt')
usr_p = gr.Textbox(lines=1, value="What is happening in this image?", label='User Prompt')
cam = gr.Image(sources=['webcam'], streaming=True, label='Webcam Feed')
cap = gr.Textbox(interactive=False, label='Caption')
cam.stream(
fn=caption_frame,
inputs=[cam, size_dd, model_dd, clip_dd, interval, sys_p, usr_p],
outputs=[cap], time_limit=600
)
demo.launch()
if __name__ == '__main__':
main()
|