Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM | |
# Load the model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("unsloth/Llama-3.2-1B") | |
model = AutoModelForCausalLM.from_pretrained("unsloth/Llama-3.2-1B") | |
# Use a pipeline for text generation | |
text_gen_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
# Text generation function with additional parameters | |
def generate_text(prompt, max_length=50, temperature=0.7, top_p=0.9, top_k=50): | |
generated_text = text_gen_pipeline(prompt, | |
max_length=max_length, | |
temperature=temperature, | |
top_p=top_p, | |
top_k=top_k, | |
num_return_sequences=1) | |
return generated_text[0]['generated_text'] | |
# Gradio Interface | |
with gr.Blocks() as demo: | |
gr.Markdown("## Text Generation with Llama 3.2 - 1B") | |
# Input box for user prompt | |
prompt_input = gr.Textbox(label="Input (Prompt)", placeholder="Enter your prompt here...") | |
# Slider for maximum text length | |
max_length_input = gr.Slider(minimum=10, maximum=200, value=50, step=10, label="Maximum Length") | |
# Slider for temperature (controls creativity) | |
temperature_input = gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature (creativity)") | |
# Slider for top_p (nucleus sampling) | |
top_p_input = gr.Slider(minimum=0.1, maximum=1.0, value=0.9, step=0.1, label="Top-p (nucleus sampling)") | |
# Slider for top_k (controls diversity) | |
top_k_input = gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Top-k (sampling diversity)") | |
# Output box for the generated text | |
output_text = gr.Textbox(label="Generated Text") | |
# Submit button | |
generate_button = gr.Button("Generate") | |
# Action on button click | |
generate_button.click(generate_text, inputs=[prompt_input, max_length_input, temperature_input, top_p_input, top_k_input], outputs=output_text) | |
# Launch the app | |
demo.launch() | |